As an effective image segmentation method, the standard fuzzy c-means (FCM) clustering algorithm is very sensitive to noise in images. Several modified FCM algorithms, using local spatial information, can overcome t...As an effective image segmentation method, the standard fuzzy c-means (FCM) clustering algorithm is very sensitive to noise in images. Several modified FCM algorithms, using local spatial information, can overcome this problem to some degree. However, when the noise level in the image is high, these algorithms still cannot obtain satisfactory segmentation performance. In this paper, we introduce a non local spatial constraint term into the objective function of FCM and propose a fuzzy c- means clustering algorithm with non local spatial information (FCM_NLS). FCM_NLS can deal more effectively with the image noise and preserve geometrical edges in the image. Performance evaluation experiments on synthetic and real images, especially magnetic resonance (MR) images, show that FCM NLS is more robust than both the standard FCM and the modified FCM algorithms using local spatial information for noisy image segmentation.展开更多
提出了一个结合融合空间约束的模糊C均值(Fuzzy C means with spatial constraints,FCMS)聚类与变分水平集的图像模糊聚类分割模型.在该模型中引入了一个基于图像局部信息和空间信息的外部模糊聚类能量,从而可以获取精确的局部图像的空...提出了一个结合融合空间约束的模糊C均值(Fuzzy C means with spatial constraints,FCMS)聚类与变分水平集的图像模糊聚类分割模型.在该模型中引入了一个基于图像局部信息和空间信息的外部模糊聚类能量,从而可以获取精确的局部图像的空间特征,使得本文模型对噪声图像的聚类分割具有较强的鲁棒性.采用不同类型的实验图像,将本文模型与10个不同类型的图像分割模型进行了对比实验,实验结果显示本文模型能克服图像中噪声影响并取得较满意的聚类分割结果.展开更多
文摘As an effective image segmentation method, the standard fuzzy c-means (FCM) clustering algorithm is very sensitive to noise in images. Several modified FCM algorithms, using local spatial information, can overcome this problem to some degree. However, when the noise level in the image is high, these algorithms still cannot obtain satisfactory segmentation performance. In this paper, we introduce a non local spatial constraint term into the objective function of FCM and propose a fuzzy c- means clustering algorithm with non local spatial information (FCM_NLS). FCM_NLS can deal more effectively with the image noise and preserve geometrical edges in the image. Performance evaluation experiments on synthetic and real images, especially magnetic resonance (MR) images, show that FCM NLS is more robust than both the standard FCM and the modified FCM algorithms using local spatial information for noisy image segmentation.
文摘提出了一个结合融合空间约束的模糊C均值(Fuzzy C means with spatial constraints,FCMS)聚类与变分水平集的图像模糊聚类分割模型.在该模型中引入了一个基于图像局部信息和空间信息的外部模糊聚类能量,从而可以获取精确的局部图像的空间特征,使得本文模型对噪声图像的聚类分割具有较强的鲁棒性.采用不同类型的实验图像,将本文模型与10个不同类型的图像分割模型进行了对比实验,实验结果显示本文模型能克服图像中噪声影响并取得较满意的聚类分割结果.