This paper presents a source localization algorithm based on the source signal's time-difference-of-arrival(TDOA) for asynchronous wireless sensor network.To obtain synchronization among anchors,all anchors broadc...This paper presents a source localization algorithm based on the source signal's time-difference-of-arrival(TDOA) for asynchronous wireless sensor network.To obtain synchronization among anchors,all anchors broadcast signals periodically,the clock offsets and skews of anchor pairs can be estimated using broadcasting signal's time-of-arrivals(TOA) at anchors.A kalman filter is adopted to improve the accuracy of clock offsets and track the clock drifts due to random fluctuations.Once the source transmits signal,the TOAs at anchors are stamped respectively and source's TDOA error due to clock offset and skew of anchor pair can be mitigated by a compensation operation.Based on a Gaussian noise model,maximum likelihood estimation(MLE) for the source position is obtained.Performance issues are addressed by evaluating the Cramer-Rao lower bound and the selection of broadcasting period.The proposed algorithm is simple and effective,which has close performance with synchronous TDOA algorithm.展开更多
Based on the analyses for the characteristics of high precise GPS defor-mation monitor,according to the spatial relationship among the satellite, base point and monitoring point a new model and its corresponding algor...Based on the analyses for the characteristics of high precise GPS defor-mation monitor,according to the spatial relationship among the satellite, base point and monitoring point a new model and its corresponding algorithm were presented to solve the monitoring point deformation directly at single epoch. In this method the carrier phases is used as the basic observations, and the initial condition is precise baseline vectors obtained in the first period observations between the base point and monitoring point. This model is called the similar single difference model (SSDM). The main error sources effecting the accuracy of deformations were analyzed briefly, the single epoch algorithm of the receiver clock offset was advanced. The numerical results of test data show that the SSDM and the single epoch algorithm of receiver clock offset advanced are reliable and correct.展开更多
This paper proposes a distributed second-order consensus time synchronization, which incorporates the second-order consensus algorithm into wireless sensor networks. Since local clocks may have different skews and off...This paper proposes a distributed second-order consensus time synchronization, which incorporates the second-order consensus algorithm into wireless sensor networks. Since local clocks may have different skews and offsets, the algorithm is designed to include offset compensation and skew compensation. The local clocks are not directly modified, thus the virtual clocks are built according to the local clocks via the compensation parameters. Each node achieves a virtual consensus clock by periodically updated compensation parameters. Finally, the effectiveness of the proposed algorithm is verified through a number of simulations in a mesh network. It is proved that the proposed algorithm has the advantage of being distributed, asymptotic convergence, and robust to new node joining.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61571452 and No.61201331
文摘This paper presents a source localization algorithm based on the source signal's time-difference-of-arrival(TDOA) for asynchronous wireless sensor network.To obtain synchronization among anchors,all anchors broadcast signals periodically,the clock offsets and skews of anchor pairs can be estimated using broadcasting signal's time-of-arrivals(TOA) at anchors.A kalman filter is adopted to improve the accuracy of clock offsets and track the clock drifts due to random fluctuations.Once the source transmits signal,the TOAs at anchors are stamped respectively and source's TDOA error due to clock offset and skew of anchor pair can be mitigated by a compensation operation.Based on a Gaussian noise model,maximum likelihood estimation(MLE) for the source position is obtained.Performance issues are addressed by evaluating the Cramer-Rao lower bound and the selection of broadcasting period.The proposed algorithm is simple and effective,which has close performance with synchronous TDOA algorithm.
基金Doctor Foundation of Anhui University of Science and Technology.
文摘Based on the analyses for the characteristics of high precise GPS defor-mation monitor,according to the spatial relationship among the satellite, base point and monitoring point a new model and its corresponding algorithm were presented to solve the monitoring point deformation directly at single epoch. In this method the carrier phases is used as the basic observations, and the initial condition is precise baseline vectors obtained in the first period observations between the base point and monitoring point. This model is called the similar single difference model (SSDM). The main error sources effecting the accuracy of deformations were analyzed briefly, the single epoch algorithm of the receiver clock offset was advanced. The numerical results of test data show that the SSDM and the single epoch algorithm of receiver clock offset advanced are reliable and correct.
基金Supported by the National Natural Science Foundation of China(No.61340034)the Research Program of Application Foundation and Advanced Technology of Tianjin(No.13JCYBJC15600)
文摘This paper proposes a distributed second-order consensus time synchronization, which incorporates the second-order consensus algorithm into wireless sensor networks. Since local clocks may have different skews and offsets, the algorithm is designed to include offset compensation and skew compensation. The local clocks are not directly modified, thus the virtual clocks are built according to the local clocks via the compensation parameters. Each node achieves a virtual consensus clock by periodically updated compensation parameters. Finally, the effectiveness of the proposed algorithm is verified through a number of simulations in a mesh network. It is proved that the proposed algorithm has the advantage of being distributed, asymptotic convergence, and robust to new node joining.