We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as l...We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as large as 1400Er when laser light with a power of only 0.6 W incident to the lattice cavity.Such high trap depths are the key to accurate evaluation of the lattice-induced light shift with an uncertainty down to~1×10-18.By probing the ytterbium atoms trapped in the power-enhanced optical lattice,we obtain a 4.3 Hz-linewidth Rabi spectrum,which is then used to feedback to the clock laser for the close loop operation of the optical lattice clock.We evaluate the density shift of the Yb optical lattice clock based on interleaving measurements,which is-0.46(62)mHz.This result is smaller compared to the density shift of our first Yb optical clock without lattice power enhancement cavity mainly due to a larger lattice diameter of 344μm.展开更多
Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external...Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external infrared electromagnetic wave disturbances can be responded to.Utilizing the ac Stark shift of the clock transition,we propose a new method to detect infrared signals.According to our calculations,the theoretical detection accuracy in the vicinity of its resonance band of 2.6μm can reach the order of 10-14W,while the minimum detectable signal of common detectors is on the order of 10^(-10)W.展开更多
Synchrony of biological processes with environmental cues developed over millennia to match growth, reproduction and senescence. This entails a complex interplay of genetic, metabolic, chemical, light, hormonal andhed...Synchrony of biological processes with environmental cues developed over millennia to match growth, reproduction and senescence. This entails a complex interplay of genetic, metabolic, chemical, light, hormonal andhedonistic factors across life forms. Sleep is one of the most prominent rhythms where such a match is established. Over the past 100 years or so, it has been possible to disturb the synchrony between sleep-wake cycle and environmental cues. Development of electric lights, shift work and continual accessibility of the internet has disrupted this match. As a result, many noncommunicable diseases such as obesity, insulin resistance, type 2 diabetes, coronary artery disease and malignancies have been attributed in part to such disruption. In this presentation a review is made of the origin and evolution of sleep studies, the pathogenic mediators for such asynchrony, clinical evidence and relevance and suggested management options to deal with the disturbances.展开更多
The study of magnetic field effects on the clock transition of Mg and Cd optical lattice clocks is scarce.In this work,the hyperfine-induced Landég-factors and quadratic Zeeman shift coefficients of the nsnp ^(3)...The study of magnetic field effects on the clock transition of Mg and Cd optical lattice clocks is scarce.In this work,the hyperfine-induced Landég-factors and quadratic Zeeman shift coefficients of the nsnp ^(3)P_(0)^(o) clock states for ^(111,113)Cd and ^(25)Mg were calculated by using the multi-configuration Dirac–Hartree–Fock theory.To obtain accurate values of these parameters,the impact of electron correlations and furthermore the Breit interaction and quantum electrodynamical effects on the Zeeman and hyperfine interaction matrix elements,and energy separations were investigated in detail.We also estimated the contributions from perturbing states to the Landég-factors and quadratic Zeeman shift coefficients concerned so as to truncate the summation over the perturbing states without loss of accuracy.Our calculations provide important data for estimating the first-and second-order Zeeman shifts of the clock transition for the Cd and Mg optical lattice clocks.展开更多
Recent digital applications will require highly efficient and high-speed gadgets and it is related to the minimum delay and power consumption.The proposed work deals with a low-power clock pulsed data flip-flop(D flip...Recent digital applications will require highly efficient and high-speed gadgets and it is related to the minimum delay and power consumption.The proposed work deals with a low-power clock pulsed data flip-flop(D flip-flop)using a transmission gate.To accomplish a power-efficient pulsed D flip-flop,clock gating is proposed.The gated clock reduces the unnecessary switching of the transistors in the circuit and thus reduces the dynamic power consumption.The clock gating approach is employed by using an AND gate to disrupt the clock input to the circuit as per the control signal called Enable.Due to this process,the clock gets turned off to reduce power consumption when there is no change in the output.The proposed transmission gate-based pulsed D flip-flop’s performance with clock gating and without clock gating circuit is analyzed.The proposed pulsed D flip-flop power consumption is 1.586μw less than the without clock gated flip-flop.Also,the authors have designed a 3-bit serial-in and parallel-out shift register using the proposed D flip-flop and analyzed the performance.Tanner Electronic Design Automation tool is used to simulate all the circuits with 45 nm technology.展开更多
The caesium atomic fountain clock is a primary frequency standard.During its operation,a Majorana transition frequency shift will occur once a magnetic field at some special locations along the atomic trajectory is si...The caesium atomic fountain clock is a primary frequency standard.During its operation,a Majorana transition frequency shift will occur once a magnetic field at some special locations along the atomic trajectory is singular.In this study,by developing a physical model,we analyzed the magnetic field requirements for atomic adiabatic transition and calculated the influence of the Majorana atomic transition on the atomic state via a quantum method.Based on the simulation results for the magnetic field in the fountain clock,we applied the Monte Carlo method to simulate the relationship between the Majorana transition frequency shift and the magnetic field at the entrance of the magnetic shielding,as well as the initial atomic population.Measurement of the Majorana transition frequency shift was realized by state-selecting asymmetrically populated atoms.The relationship between the Majorana transition frequency shift and the axial magnetic field at the entrance of the magnetic shielding was obtained.The measured results were essentially consistent with the calculated results.Thus,the magnetic field at the entrance of the magnetic shielding was configured,and the Majorana transition frequency shift of the fountain clock was calculated to be 4.57×10^(-18).展开更多
In this paper, we report the development of the design verification model (DVM) of Rb atomic frequency standard for the Indian Regional Navigational Satellite System (IRNSS) programme. Rb atomic clock is preferred for...In this paper, we report the development of the design verification model (DVM) of Rb atomic frequency standard for the Indian Regional Navigational Satellite System (IRNSS) programme. Rb atomic clock is preferred for the space applications as it is light-weight and small in size with excellent frequency stability for the short and medium term. It has been used in all other similar navigation satellite systems including GPS, GLONASS Galileo etc. The Rb atomic frequency standard or clock has two distinct parts. One is the physics package where the hyperfine transitions produce the clock signal in the integrated filter cell or separate filter cell configuration and the other is the electronic circuits which include frequency synthesizer for generating the resonant microwave hyperfine frequency, phase modulator and phase sensitive detector. In this paper, the details of the Rb physics package and the electronic circuits are given. The reasons for the mode change in Rb lamp have been revisited. The effect of putting the photo detector inside the microwave cavity is studied and reported with its effect on the resonance signal profile. The Rb clock frequency stability measurements have also been discussed.展开更多
激光时间比对T2L2(Time Transfer by Laser Link)是法国蔚蓝海岸天文台(OCA)和法国空间中心(CNES)进行的新一代的时间传递计划,将于2008年年中随Jason-2卫星发射上天,并开始观测。它利用激光脉冲在空间的传播来实现地面-卫星,...激光时间比对T2L2(Time Transfer by Laser Link)是法国蔚蓝海岸天文台(OCA)和法国空间中心(CNES)进行的新一代的时间传递计划,将于2008年年中随Jason-2卫星发射上天,并开始观测。它利用激光脉冲在空间的传播来实现地面-卫星,地面-地面远距离时钟的同步,精度比现有的微波比对方式提高1~2个数量级。中国拥有5个固定激光测距站和2个流动激光测距站,基于良好的地理位置和中法双方比较成熟的激光测距技术,中法激光站之间的时间比对和中国内部激光站之间的时间比对是该计划的重要内容。本文系统描述了T2L2的主要内容和关键技术,初步估算了该计划的精度和稳定度,对中法之间的时间比对做出了初步的观测规划。同时,简单介绍了目前世界上精密时钟的发展现况、T2L2的应用前景及正在研究中的TIPO、ASTROD Ⅰ、ACES、EGE等探测基本物理的相关空间计划。展开更多
Caesium atomic fountain clock is a primary frequency standard,which realizes the duration of second.Its performance is mostly dominated by the frequency accuracy,and the C-field induced second-order Zeeman frequency s...Caesium atomic fountain clock is a primary frequency standard,which realizes the duration of second.Its performance is mostly dominated by the frequency accuracy,and the C-field induced second-order Zeeman frequency shift is the major effect,which limits the accuracy improvement.By applying a high-precision current supply and high-performance magnetic shieldings,the C-field stability has been improved significantly.In order to achieve a uniform C-field,this paper proposes a doubly wound C-field solenoid,which compensates the radial magnetic field along the atomic flight region generated by the lead-out single wire and improves the accuracy evaluation of second-order Zeeman frequency shift.Based on the stable and uniform C-field,we launch the selected atoms to different heights and record the magnetically sensitive Ramsey transition|F=3,mF=-1→|F=4,mF=-1 central frequency,obtaining this frequency shift as 131.03×10^(-15)and constructing the C-field profile(σ=0.15 n T).Meanwhile,during normal operation,we lock NTSC-F2 to the central frequency of the magnetically sensitive Ramsey transition|F=3,mF=-1→|F=4,mF=-1 fringe for ten consecutive days and record this frequency fluctuation in time domain.The first evaluation of second-order Zeeman frequency shift uncertainty is 0.10×10^(-15).The total deviation of the frequency fluctuation on the clock transition induced by the C-field instability is less than 2.6×10^(-17).Compared with NTSC-F1,NTSC-F2,there appears a significant improvement.展开更多
In the weak-magnetic-field approximation,we derived an expression of quadratic Zeeman shift coefficient of^(3)P_(0)^(o)clock state for^(88)Sr and^(87)Sr atoms.By using this formula and the multi-configuration Dirac-Ha...In the weak-magnetic-field approximation,we derived an expression of quadratic Zeeman shift coefficient of^(3)P_(0)^(o)clock state for^(88)Sr and^(87)Sr atoms.By using this formula and the multi-configuration Dirac-Hartree-Fock theory,the quadratic Zeeman shift coefficients were calculated.The calculated values C_(2)=-23.38(5)MHz/T^(2) for^(88)Sr and the^(3)p_(0)^(o),F=9/2,M_(F)=±9/2 clock states for^(87)Sr agree well with the other available theoretical and experimental values,especially the most accurate measurement recently.In addition,the calculated values of the^(3)p_(0)^(o),F=9/2,M_(F)=±9/2 clock states were also determined in our^(87)Sr optical lattice clock.The consistency with measurements verifies the validation of our calculation model.Our theory is also useful to evaluate the second-order Zeeman shift of the clock transition,for example,the new proposed^(1)S_(0),F=9/2,M_(F)=±5/2-^(3)P_(0)^(o),F=9/2,M_(F)=±3/2 transitions.展开更多
Animals employ compasses during navigation,but little attention has been paid to how accuracy is maintained in the face of compass error,which is inevitable in biological systems.The use of multiple landmarks may min&...Animals employ compasses during navigation,but little attention has been paid to how accuracy is maintained in the face of compass error,which is inevitable in biological systems.The use of multiple landmarks may minimize the effect of compass error.We allowed Clark’s nutcrackers to cache seeds in an outdoor aviary with either one or four landmarks present,and subsequently subjected them to small clock-shifts mimicking the effects of compass error.As predicted,the results showed a significant decrease in search accuracy following the clock-shift when one landmark was present but not when four landmarks were present.These results support that nutcrackers encode information from the sun as well as terrestrial landmarks,and these spatial cues are used in a flexible manner.Overall,our results are important as they support the hypothesis that multiple landmarks may be used during situations where the sun compass has even a small amount of error.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12334020 and 11927810)the National Key Research and Development Program of China(Grant No.2022YFB3904001).
文摘We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as large as 1400Er when laser light with a power of only 0.6 W incident to the lattice cavity.Such high trap depths are the key to accurate evaluation of the lattice-induced light shift with an uncertainty down to~1×10-18.By probing the ytterbium atoms trapped in the power-enhanced optical lattice,we obtain a 4.3 Hz-linewidth Rabi spectrum,which is then used to feedback to the clock laser for the close loop operation of the optical lattice clock.We evaluate the density shift of the Yb optical lattice clock based on interleaving measurements,which is-0.46(62)mHz.This result is smaller compared to the density shift of our first Yb optical clock without lattice power enhancement cavity mainly due to a larger lattice diameter of 344μm.
基金Project supported by the National Natural Science Foundation of China (Grant No.12274045)。
文摘Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external infrared electromagnetic wave disturbances can be responded to.Utilizing the ac Stark shift of the clock transition,we propose a new method to detect infrared signals.According to our calculations,the theoretical detection accuracy in the vicinity of its resonance band of 2.6μm can reach the order of 10-14W,while the minimum detectable signal of common detectors is on the order of 10^(-10)W.
文摘Synchrony of biological processes with environmental cues developed over millennia to match growth, reproduction and senescence. This entails a complex interplay of genetic, metabolic, chemical, light, hormonal andhedonistic factors across life forms. Sleep is one of the most prominent rhythms where such a match is established. Over the past 100 years or so, it has been possible to disturb the synchrony between sleep-wake cycle and environmental cues. Development of electric lights, shift work and continual accessibility of the internet has disrupted this match. As a result, many noncommunicable diseases such as obesity, insulin resistance, type 2 diabetes, coronary artery disease and malignancies have been attributed in part to such disruption. In this presentation a review is made of the origin and evolution of sleep studies, the pathogenic mediators for such asynchrony, clinical evidence and relevance and suggested management options to deal with the disturbances.
基金Project supported by the National Natural Science Foundation of China (Grant No.61775220)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB21030100)the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No.QYZDB-SSW-JSC004)。
文摘The study of magnetic field effects on the clock transition of Mg and Cd optical lattice clocks is scarce.In this work,the hyperfine-induced Landég-factors and quadratic Zeeman shift coefficients of the nsnp ^(3)P_(0)^(o) clock states for ^(111,113)Cd and ^(25)Mg were calculated by using the multi-configuration Dirac–Hartree–Fock theory.To obtain accurate values of these parameters,the impact of electron correlations and furthermore the Breit interaction and quantum electrodynamical effects on the Zeeman and hyperfine interaction matrix elements,and energy separations were investigated in detail.We also estimated the contributions from perturbing states to the Landég-factors and quadratic Zeeman shift coefficients concerned so as to truncate the summation over the perturbing states without loss of accuracy.Our calculations provide important data for estimating the first-and second-order Zeeman shifts of the clock transition for the Cd and Mg optical lattice clocks.
文摘Recent digital applications will require highly efficient and high-speed gadgets and it is related to the minimum delay and power consumption.The proposed work deals with a low-power clock pulsed data flip-flop(D flip-flop)using a transmission gate.To accomplish a power-efficient pulsed D flip-flop,clock gating is proposed.The gated clock reduces the unnecessary switching of the transistors in the circuit and thus reduces the dynamic power consumption.The clock gating approach is employed by using an AND gate to disrupt the clock input to the circuit as per the control signal called Enable.Due to this process,the clock gets turned off to reduce power consumption when there is no change in the output.The proposed transmission gate-based pulsed D flip-flop’s performance with clock gating and without clock gating circuit is analyzed.The proposed pulsed D flip-flop power consumption is 1.586μw less than the without clock gated flip-flop.Also,the authors have designed a 3-bit serial-in and parallel-out shift register using the proposed D flip-flop and analyzed the performance.Tanner Electronic Design Automation tool is used to simulate all the circuits with 45 nm technology.
基金Project supported by the National Natural Science Foundation of China(Grant No.12173044)Research and Development Project of Scientific Research Instruments and Equipment of Chinese Academy of Sciences(Grant No.YJKYYQ20200020)+1 种基金Large Research Infrastructures Improvement Funds of Chinese Academy of Sciences(Grant No.DSS-WXGZ-2020-0005)Chinese Academy of Sciences for Western Young Scholars(Grant Nos.XAB2018A06,XAB2019A07,and XAB2018B16)。
文摘The caesium atomic fountain clock is a primary frequency standard.During its operation,a Majorana transition frequency shift will occur once a magnetic field at some special locations along the atomic trajectory is singular.In this study,by developing a physical model,we analyzed the magnetic field requirements for atomic adiabatic transition and calculated the influence of the Majorana atomic transition on the atomic state via a quantum method.Based on the simulation results for the magnetic field in the fountain clock,we applied the Monte Carlo method to simulate the relationship between the Majorana transition frequency shift and the magnetic field at the entrance of the magnetic shielding,as well as the initial atomic population.Measurement of the Majorana transition frequency shift was realized by state-selecting asymmetrically populated atoms.The relationship between the Majorana transition frequency shift and the axial magnetic field at the entrance of the magnetic shielding was obtained.The measured results were essentially consistent with the calculated results.Thus,the magnetic field at the entrance of the magnetic shielding was configured,and the Majorana transition frequency shift of the fountain clock was calculated to be 4.57×10^(-18).
文摘In this paper, we report the development of the design verification model (DVM) of Rb atomic frequency standard for the Indian Regional Navigational Satellite System (IRNSS) programme. Rb atomic clock is preferred for the space applications as it is light-weight and small in size with excellent frequency stability for the short and medium term. It has been used in all other similar navigation satellite systems including GPS, GLONASS Galileo etc. The Rb atomic frequency standard or clock has two distinct parts. One is the physics package where the hyperfine transitions produce the clock signal in the integrated filter cell or separate filter cell configuration and the other is the electronic circuits which include frequency synthesizer for generating the resonant microwave hyperfine frequency, phase modulator and phase sensitive detector. In this paper, the details of the Rb physics package and the electronic circuits are given. The reasons for the mode change in Rb lamp have been revisited. The effect of putting the photo detector inside the microwave cavity is studied and reported with its effect on the resonance signal profile. The Rb clock frequency stability measurements have also been discussed.
文摘激光时间比对T2L2(Time Transfer by Laser Link)是法国蔚蓝海岸天文台(OCA)和法国空间中心(CNES)进行的新一代的时间传递计划,将于2008年年中随Jason-2卫星发射上天,并开始观测。它利用激光脉冲在空间的传播来实现地面-卫星,地面-地面远距离时钟的同步,精度比现有的微波比对方式提高1~2个数量级。中国拥有5个固定激光测距站和2个流动激光测距站,基于良好的地理位置和中法双方比较成熟的激光测距技术,中法激光站之间的时间比对和中国内部激光站之间的时间比对是该计划的重要内容。本文系统描述了T2L2的主要内容和关键技术,初步估算了该计划的精度和稳定度,对中法之间的时间比对做出了初步的观测规划。同时,简单介绍了目前世界上精密时钟的发展现况、T2L2的应用前景及正在研究中的TIPO、ASTROD Ⅰ、ACES、EGE等探测基本物理的相关空间计划。
基金the National Key R&D Program of China(Grant No.2016YFF0200202)the Maintenance and Reformation Program for the Major Science and Technology Fundamental Devices of the Chinese Academy of Sciences(Grant No.DSS-WXGZ-2020-0005)the Foundation for Western Young Scholars,China(Grant No.XAB2018A06)。
文摘Caesium atomic fountain clock is a primary frequency standard,which realizes the duration of second.Its performance is mostly dominated by the frequency accuracy,and the C-field induced second-order Zeeman frequency shift is the major effect,which limits the accuracy improvement.By applying a high-precision current supply and high-performance magnetic shieldings,the C-field stability has been improved significantly.In order to achieve a uniform C-field,this paper proposes a doubly wound C-field solenoid,which compensates the radial magnetic field along the atomic flight region generated by the lead-out single wire and improves the accuracy evaluation of second-order Zeeman frequency shift.Based on the stable and uniform C-field,we launch the selected atoms to different heights and record the magnetically sensitive Ramsey transition|F=3,mF=-1→|F=4,mF=-1 central frequency,obtaining this frequency shift as 131.03×10^(-15)and constructing the C-field profile(σ=0.15 n T).Meanwhile,during normal operation,we lock NTSC-F2 to the central frequency of the magnetically sensitive Ramsey transition|F=3,mF=-1→|F=4,mF=-1 fringe for ten consecutive days and record this frequency fluctuation in time domain.The first evaluation of second-order Zeeman frequency shift uncertainty is 0.10×10^(-15).The total deviation of the frequency fluctuation on the clock transition induced by the C-field instability is less than 2.6×10^(-17).Compared with NTSC-F1,NTSC-F2,there appears a significant improvement.
基金Project supported by the National Natural Science Foundation of China(Grant No.61775220)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB21030100)+1 种基金the Key Research Project of Frontier Science of the Chinese Academy of Sciences(Grant No.QYZDB-SSW-JSC004)the West Light Foundation of the Chinese Academy of Sciences(Grant No.XAB2018B17)。
文摘In the weak-magnetic-field approximation,we derived an expression of quadratic Zeeman shift coefficient of^(3)P_(0)^(o)clock state for^(88)Sr and^(87)Sr atoms.By using this formula and the multi-configuration Dirac-Hartree-Fock theory,the quadratic Zeeman shift coefficients were calculated.The calculated values C_(2)=-23.38(5)MHz/T^(2) for^(88)Sr and the^(3)p_(0)^(o),F=9/2,M_(F)=±9/2 clock states for^(87)Sr agree well with the other available theoretical and experimental values,especially the most accurate measurement recently.In addition,the calculated values of the^(3)p_(0)^(o),F=9/2,M_(F)=±9/2 clock states were also determined in our^(87)Sr optical lattice clock.The consistency with measurements verifies the validation of our calculation model.Our theory is also useful to evaluate the second-order Zeeman shift of the clock transition,for example,the new proposed^(1)S_(0),F=9/2,M_(F)=±5/2-^(3)P_(0)^(o),F=9/2,M_(F)=±3/2 transitions.
基金a Natural Sciences Research Council grant RGPIN/312379-2009 to DMK,and a National Institutes of Health grant MH-61810 to AK.
文摘Animals employ compasses during navigation,but little attention has been paid to how accuracy is maintained in the face of compass error,which is inevitable in biological systems.The use of multiple landmarks may minimize the effect of compass error.We allowed Clark’s nutcrackers to cache seeds in an outdoor aviary with either one or four landmarks present,and subsequently subjected them to small clock-shifts mimicking the effects of compass error.As predicted,the results showed a significant decrease in search accuracy following the clock-shift when one landmark was present but not when four landmarks were present.These results support that nutcrackers encode information from the sun as well as terrestrial landmarks,and these spatial cues are used in a flexible manner.Overall,our results are important as they support the hypothesis that multiple landmarks may be used during situations where the sun compass has even a small amount of error.