Based on the data measured during Arctic scientific expedition of China in 1999, the characteristics of temperature and salinity distributions around the Chukchi Plateau and its ad-jacent regions have been studied. It...Based on the data measured during Arctic scientific expedition of China in 1999, the characteristics of temperature and salinity distributions around the Chukchi Plateau and its ad-jacent regions have been studied. It was found that the intermediate water with temperature higher than 0.5℃ existed in all parts of a 640 km section with a maximum temperature of 0.85℃ indicating a strong signal of the warming in Arctic Intermediate Water in 1999. Two important phenomena are described in this paper. First, the temperature of warm water was horizontally nonuniform. In the area of Chukchi Plateau, the temperature was higher, the layer of warm water was thicker and the depth of the warm water core was shallower than those in the area of con-tinental slope. The horizontal nonuniformity of the temperature distribution of warming water im-plies that the upward heat flux should also be nonuniform, thus exerting different effects on sea ice thickness, ice extent, and air-sea heat exchange. The mechanism to generate higher tem-perature in the plateau region was the bypassing of current around the plateau area caused by the special local topography, which restricted water exchange across the plateau and conserved heat in the water body. Second, the deep water down to 1400 m was also warming with a tem-perature increase of 0.2℃. The warming in deep water reflects the occurrence of complicated heat redistribution processes in the intermediate water, which altered the thermal structure in the upper 1400 m. The warming data embody the obvious impact of global climate change on the Arctic Ocean and further studies are wanted.展开更多
Multiproxy investigations have been performed on Core 08P23 collected from the Chukchi Plateau, the western Arctic Ocean, during the Third Chinese National Arctic Expedition. The core was dated back to Ma-rine Isotope...Multiproxy investigations have been performed on Core 08P23 collected from the Chukchi Plateau, the western Arctic Ocean, during the Third Chinese National Arctic Expedition. The core was dated back to Ma-rine Isotope Stage (MIS) 3 by a combination of Accelerator Mass Spectrometric (AMS) carbon-14 dating and regional core correlation. A total of five prominent ice-rafted detritus (IRD) events were recognized in MIS 2 and MIS 3. The IRD sources in MIS 3 are originated from vast carbonate rock outcrops of the Canadian Arctic Archipelago and clastic quartz in MIS 2 may have a Eurasian origin. Mostδ18O andδ13C values of Neogloboquadrina pachyderma (sinistral) (Nps) in Core 08P23 are lighter than the average values of surface sediments. The lighterδ18O andδ13C values of Nps in the two brown layers in MIS 1 and MIS 3 were resulted from meltwater events; and those in the gray layers in MIS 3 were caused by the enhanced sea ice formation. Theδ18O values varied inversely withδ13C in MIS 2 indicate that the study area was covered by thick sea ice or ice sheet with low temperature and little meltwater, which prevented the biological productivity and sea-atmosphere exchange, as well as water mass ventilation. The covaried light values ofδ18O andδ13C in MIS 1 and MIS 3 were resulted from meltwater and/or brine injection.展开更多
基金the special project for China firs tscientific expedition the National Natural Science Foundation of China(Grant No.49876008)the Key Project of Chinese Academy of Sciences(Grant No.KZ951-A1-205).
文摘Based on the data measured during Arctic scientific expedition of China in 1999, the characteristics of temperature and salinity distributions around the Chukchi Plateau and its ad-jacent regions have been studied. It was found that the intermediate water with temperature higher than 0.5℃ existed in all parts of a 640 km section with a maximum temperature of 0.85℃ indicating a strong signal of the warming in Arctic Intermediate Water in 1999. Two important phenomena are described in this paper. First, the temperature of warm water was horizontally nonuniform. In the area of Chukchi Plateau, the temperature was higher, the layer of warm water was thicker and the depth of the warm water core was shallower than those in the area of con-tinental slope. The horizontal nonuniformity of the temperature distribution of warming water im-plies that the upward heat flux should also be nonuniform, thus exerting different effects on sea ice thickness, ice extent, and air-sea heat exchange. The mechanism to generate higher tem-perature in the plateau region was the bypassing of current around the plateau area caused by the special local topography, which restricted water exchange across the plateau and conserved heat in the water body. Second, the deep water down to 1400 m was also warming with a tem-perature increase of 0.2℃. The warming in deep water reflects the occurrence of complicated heat redistribution processes in the intermediate water, which altered the thermal structure in the upper 1400 m. The warming data embody the obvious impact of global climate change on the Arctic Ocean and further studies are wanted.
基金The National Natural Science Foundation of China under contract Nos 41030859,41211120173,CHINARE2015-03-02 and IC201105the Geological Investigation Project of China Geological Survey Nos 12120113006200 and 1212011120044
文摘Multiproxy investigations have been performed on Core 08P23 collected from the Chukchi Plateau, the western Arctic Ocean, during the Third Chinese National Arctic Expedition. The core was dated back to Ma-rine Isotope Stage (MIS) 3 by a combination of Accelerator Mass Spectrometric (AMS) carbon-14 dating and regional core correlation. A total of five prominent ice-rafted detritus (IRD) events were recognized in MIS 2 and MIS 3. The IRD sources in MIS 3 are originated from vast carbonate rock outcrops of the Canadian Arctic Archipelago and clastic quartz in MIS 2 may have a Eurasian origin. Mostδ18O andδ13C values of Neogloboquadrina pachyderma (sinistral) (Nps) in Core 08P23 are lighter than the average values of surface sediments. The lighterδ18O andδ13C values of Nps in the two brown layers in MIS 1 and MIS 3 were resulted from meltwater events; and those in the gray layers in MIS 3 were caused by the enhanced sea ice formation. Theδ18O values varied inversely withδ13C in MIS 2 indicate that the study area was covered by thick sea ice or ice sheet with low temperature and little meltwater, which prevented the biological productivity and sea-atmosphere exchange, as well as water mass ventilation. The covaried light values ofδ18O andδ13C in MIS 1 and MIS 3 were resulted from meltwater and/or brine injection.