The study of room temperature phosphorescence (RTP) of several polyaromatic hydrocarbons has been conducted.The results showed that naphthalene,acenaphthene and chrysene absorbed on filter paper can produce strong RTP...The study of room temperature phosphorescence (RTP) of several polyaromatic hydrocarbons has been conducted.The results showed that naphthalene,acenaphthene and chrysene absorbed on filter paper can produce strong RTP by using TlNO 3 as the heavy atom.展开更多
Density functional theory calculations were carried out to study the thermal cracking for chrysene molecule to estimate the bond energies for breaking C 10b-C 11, C 11-H 11 and C4a-C 12a bonds as well as the activatio...Density functional theory calculations were carried out to study the thermal cracking for chrysene molecule to estimate the bond energies for breaking C 10b-C 11, C 11-H 11 and C4a-C 12a bonds as well as the activation energies. It was found that for C 10b-C 11 C11-HI 1 and C4a-C12a reactions, it is often possible to identify one pathway for bond breakage through the singlet or triplet states. Thus, the C 11-H11 and C11-C10b bonds ruptured in triplet state whilst the C12a-C4a in singlet state. Also, it was fond that the activation energy value for C4a-C12a bond breakage is lower than required for C10b-C11 and C11-H11 bonds that enquired the C4a-C12a bond "bridge bond" is a weaker and ruptured firstly in thermal cracking process. It seems that the characteristic planarity for polyaromatic hydrocarbons is an important factor to acquire the molecule structure the required stability along the reaction paths as well as the full octet rule and Clar's n-sextet structure, especially when chrysene molecular lose the property of planarity. The atomic charges supported the observation that the breaking bonds C10b-C11, CI1-H11 and C4a-C12a in triplet or singlet states. The configurations in transition state and the conformation for the end products reaction were explained and discussed.展开更多
Crystal packing has strong influence on the charge mobility for organic semiconductors, so the elucidation of the structure-property relationship is important for the design of high-performance organic semiconductors....Crystal packing has strong influence on the charge mobility for organic semiconductors, so the elucidation of the structure-property relationship is important for the design of high-performance organic semiconductors. Halogen substitution has been shown to be a promising strategy to alter the crystal structure without significantly changing the molecular size in previous reports. This paper studies the influence of halogenation on charge transport in single crystals of chrysene derivatives from a theoretical standpoint. The structure-property relationship is first rationalized by investigating the reorganization energy and electronic coupling from the density functional theory calculations. Based on the Marcus charge transfer theory, the mobilities in the molecular monolayer are then calculated with the random walk simulation technique from which the angular resolution anisotropic mobilities are obtained on the fly. It is shown that the mobilities become much larger for holes than those for electrons in the molecular monolayer when the halogenation occurs. Furthermore, the intra-layer charge transport is little influenced by the inter-layer pathways in the single crystals of the halogenated chrysene derivatives, while the opposite case is shown for the crystal of the nonhalogenated chrysene derivative. The reason for the variations of charge transport is discussed theoretically.展开更多
文摘The study of room temperature phosphorescence (RTP) of several polyaromatic hydrocarbons has been conducted.The results showed that naphthalene,acenaphthene and chrysene absorbed on filter paper can produce strong RTP by using TlNO 3 as the heavy atom.
文摘Density functional theory calculations were carried out to study the thermal cracking for chrysene molecule to estimate the bond energies for breaking C 10b-C 11, C 11-H 11 and C4a-C 12a bonds as well as the activation energies. It was found that for C 10b-C 11 C11-HI 1 and C4a-C12a reactions, it is often possible to identify one pathway for bond breakage through the singlet or triplet states. Thus, the C 11-H11 and C11-C10b bonds ruptured in triplet state whilst the C12a-C4a in singlet state. Also, it was fond that the activation energy value for C4a-C12a bond breakage is lower than required for C10b-C11 and C11-H11 bonds that enquired the C4a-C12a bond "bridge bond" is a weaker and ruptured firstly in thermal cracking process. It seems that the characteristic planarity for polyaromatic hydrocarbons is an important factor to acquire the molecule structure the required stability along the reaction paths as well as the full octet rule and Clar's n-sextet structure, especially when chrysene molecular lose the property of planarity. The atomic charges supported the observation that the breaking bonds C10b-C11, CI1-H11 and C4a-C12a in triplet or singlet states. The configurations in transition state and the conformation for the end products reaction were explained and discussed.
基金financially supported by the Major State Basic Research Development Programs of China (2011CBA00701)the National Natural Science Foundation of China (21003030 and 20973049)+1 种基金the Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HC201117)and the China Postdoctoral Science Foundation (20110490102)
文摘Crystal packing has strong influence on the charge mobility for organic semiconductors, so the elucidation of the structure-property relationship is important for the design of high-performance organic semiconductors. Halogen substitution has been shown to be a promising strategy to alter the crystal structure without significantly changing the molecular size in previous reports. This paper studies the influence of halogenation on charge transport in single crystals of chrysene derivatives from a theoretical standpoint. The structure-property relationship is first rationalized by investigating the reorganization energy and electronic coupling from the density functional theory calculations. Based on the Marcus charge transfer theory, the mobilities in the molecular monolayer are then calculated with the random walk simulation technique from which the angular resolution anisotropic mobilities are obtained on the fly. It is shown that the mobilities become much larger for holes than those for electrons in the molecular monolayer when the halogenation occurs. Furthermore, the intra-layer charge transport is little influenced by the inter-layer pathways in the single crystals of the halogenated chrysene derivatives, while the opposite case is shown for the crystal of the nonhalogenated chrysene derivative. The reason for the variations of charge transport is discussed theoretically.