Filamentation-induced water condensation and snow formation are investigated using laser pulses with different chirps and pulse widths. Chirped pulses result in the laser filamentation with different spatial lengths a...Filamentation-induced water condensation and snow formation are investigated using laser pulses with different chirps and pulse widths. Chirped pulses result in the laser filamentation with different spatial lengths and intensities, which has a great impact on airflow motion and snow formation. The experiments show that snow formation mainly relates to the filament intensity distribution. Negative chirped pulses produce a greater amount of snow because of higher intensity inside the filaments as compared with the positive chirped pulses.展开更多
A 1550-nm all-fiber monostatic lidar system based on linear chirp amplitude modulation and heterodyne detection for the measurements of range and velocity is presented. The signal processing method is given, after whi...A 1550-nm all-fiber monostatic lidar system based on linear chirp amplitude modulation and heterodyne detection for the measurements of range and velocity is presented. The signal processing method is given, after which the relationship between the peak frequency values in the final signal spectrum, the target's range, and the line-of-sight velocity is obtained in the presence of the fiber end-face-reflected signal plaguing many monostatic lidar systems. The range of an electric fan as well as the line-of-sight fan speed of different levels is tested. This proposed system has a potential application for the space-borne landing system.展开更多
Under the condition of combined effects of group--velocitydispersion and self- phase modulation, the step Fourier method isused to simulate the propagation of initial chirped super-Gaussianpulses inside fiber. The ini...Under the condition of combined effects of group--velocitydispersion and self- phase modulation, the step Fourier method isused to simulate the propagation of initial chirped super-Gaussianpulses inside fiber. The initial chirp influences the shapes of superGaussian pulses in propagation process, and positive and negativechirps have different effects. For the existing of initial chirp, thesplits of pulses and the spreading speed move ahead and increase.When the amplitude of super-Gaussian pulses increases by 1.4 times,in the range of │C│<1.5, pulses can keep good shapes along theirpropagation distance.展开更多
Stepped frequency chirp signal obtains high-resolution radar images by synthesizing multiple narrowband chirp pulses.It has been one of the most commonly used wideband radar waveforms due to its lower demand for radar...Stepped frequency chirp signal obtains high-resolution radar images by synthesizing multiple narrowband chirp pulses.It has been one of the most commonly used wideband radar waveforms due to its lower demand for radar instant bandwidth.In this paper,we propose a radar jamming method using two-dimensional nonperiodic phase modulation against stepped frequency chirp signal imaging radar.Using the unique property of nonperiodic phase modulation,the proposed method can generate high-level sidelobes that perform as a special blanket jamming along both the range and azimuth directions and make the target unrecognizable.Then,the influence of different modulation parameters,such as the code width and duty ratio,are further discussed.Based on this,the corresponding parameter design principles are presented.Finally,the validity of the proposed method is demonstrated by the Yake-42 plane data simulation and measured unmanned aerial vehicle data experiment.展开更多
We report on our high-contrast laser based on high-contrast, high-energy seed injection, low-gain optical para- metric chirped pulse amplification (OPCPA), and Nd:glass amplifiers, which can be used as the high-con...We report on our high-contrast laser based on high-contrast, high-energy seed injection, low-gain optical para- metric chirped pulse amplification (OPCPA), and Nd:glass amplifiers, which can be used as the high-contrast front end of a high-power Nd:glass chirped pulse amplification (CPA) laser system. The energy of the stretched 1053 nm high-contrast seed pulse increases to 60 DJ by optimizing the frequency doubling crystal in the pulse cleaning device. After passing through a two-stage low-gain OPCPA, a 2-pass 2-rod Nd:glass amplifier, and a compressor the amplified pulse of 131 mJ/282 fs is achieved. The third-order correlation scanning measurement shows that the pulse contrast in the tens of ps range is about 10^-7-10^-8. With the high-contrast seed passing through the stretcher and compressor only, the contrast measurement indicates that the stretching-compressing process leads mainly to the contrast degradation of the amplified pulse.展开更多
Many insect families have evolved to produce and detect complex singing patterns for the purposes of mating, display of dominance, predator escape, and other needs. While the mechanisms of sound production by insects ...Many insect families have evolved to produce and detect complex singing patterns for the purposes of mating, display of dominance, predator escape, and other needs. While the mechanisms of sound production by insects have been thoroughly studied, man-machine exploitation of such mechanisms has remained unreported. We therefore describe a method to modulate the frequency spectrum in the chirp call of a singing insect, Gampsocleis gratiosa (Orthoptera: Tettigoniidae), a large katydid indigenous to China and commonly known as Guo Guo or Chinese Bush Cricket. The chirp modulation was achieved through the contact of a ribbon of lonic Polymer-Metal Composite (IPMC) against wing of the insect. The IPMC effectively served as an actuator when a small DC voltage was applied to the ribbon's faces. By applying a sequential on/off voltage waveform to the IPMC ribbon, the katydid's chirp was modulated in a corresponding manner. This configuration can be used as part of a broader application of using singing insects to harness their acoustic power to produce and propagate machine-induced messages into the acoustic environment.展开更多
In this paper,a novel M-ary chirp modulation scheme is proposed on the basis of the energy concen-tration property of chirp signals in fractional domain.In the proposed scheme,chirp signals with diferent phases are mu...In this paper,a novel M-ary chirp modulation scheme is proposed on the basis of the energy concen-tration property of chirp signals in fractional domain.In the proposed scheme,chirp signals with diferent phases are multiplexed in the same time frequency bandwidth through reverse chirp rate to increase information rate.In addition,fractional filters based on fractional Fourier transform(FRFT)are designed to separate chirp signals of diferent chirp-rates in the receiver.Moreover,the theoretical performance of fractional filters and the error probability of M-ary chirp system are derived.Both theoretical analysis and simulation prove that the proposed scheme outperforms M-ary quadrature amplitude modulation(QAM)system in the anti-noise performance.展开更多
Sine Non-linear Chirp Keying(SNCK) is a kind of high-efficient modulation scheme, which provides a potential new beamforming method in communication and radar systems. It has been proved to have advantages in some par...Sine Non-linear Chirp Keying(SNCK) is a kind of high-efficient modulation scheme, which provides a potential new beamforming method in communication and radar systems. It has been proved to have advantages in some parameter estimation issues over conventional modulation schemes. In this paper, a novel transform termed as Discrete Sinusoidal Frequency Modulation transform(DSFMT) is proposed. Then, the DSFMT of SNCK signal is deduced and classified into three types, based on which, the time-bandwidth product is estimated by the proposed algorithm. Simulation results show that the noise has a signifi cant impact on the localization of the peak value and the time-bandwidth product can be estimated by using local ratio values when.展开更多
基金supported by the National Basic Research Program of China(No.2011CB808100)the National Natural Science Foundation of China(Nos.11425418,61475167,11404354,and 61221064)+1 种基金the Shanghai Science and Technology Talent Project(No.12XD1405200)the State Key Laboratory Program of the Chinese Ministry of Science and Technology
文摘Filamentation-induced water condensation and snow formation are investigated using laser pulses with different chirps and pulse widths. Chirped pulses result in the laser filamentation with different spatial lengths and intensities, which has a great impact on airflow motion and snow formation. The experiments show that snow formation mainly relates to the filament intensity distribution. Negative chirped pulses produce a greater amount of snow because of higher intensity inside the filaments as compared with the positive chirped pulses.
文摘A 1550-nm all-fiber monostatic lidar system based on linear chirp amplitude modulation and heterodyne detection for the measurements of range and velocity is presented. The signal processing method is given, after which the relationship between the peak frequency values in the final signal spectrum, the target's range, and the line-of-sight velocity is obtained in the presence of the fiber end-face-reflected signal plaguing many monostatic lidar systems. The range of an electric fan as well as the line-of-sight fan speed of different levels is tested. This proposed system has a potential application for the space-borne landing system.
文摘Under the condition of combined effects of group--velocitydispersion and self- phase modulation, the step Fourier method isused to simulate the propagation of initial chirped super-Gaussianpulses inside fiber. The initial chirp influences the shapes of superGaussian pulses in propagation process, and positive and negativechirps have different effects. For the existing of initial chirp, thesplits of pulses and the spreading speed move ahead and increase.When the amplitude of super-Gaussian pulses increases by 1.4 times,in the range of │C│<1.5, pulses can keep good shapes along theirpropagation distance.
基金Project supported by the Natural Science Foundation of Hunan Province,China(No.2022JJ40561)the Scientific Research Program of National University of Defense Technology,China(No.ZK22-46)the National Natural Science Foundation of China(Nos.61890542,62001481,and 62071475)。
文摘Stepped frequency chirp signal obtains high-resolution radar images by synthesizing multiple narrowband chirp pulses.It has been one of the most commonly used wideband radar waveforms due to its lower demand for radar instant bandwidth.In this paper,we propose a radar jamming method using two-dimensional nonperiodic phase modulation against stepped frequency chirp signal imaging radar.Using the unique property of nonperiodic phase modulation,the proposed method can generate high-level sidelobes that perform as a special blanket jamming along both the range and azimuth directions and make the target unrecognizable.Then,the influence of different modulation parameters,such as the code width and duty ratio,are further discussed.Based on this,the corresponding parameter design principles are presented.Finally,the validity of the proposed method is demonstrated by the Yake-42 plane data simulation and measured unmanned aerial vehicle data experiment.
文摘We report on our high-contrast laser based on high-contrast, high-energy seed injection, low-gain optical para- metric chirped pulse amplification (OPCPA), and Nd:glass amplifiers, which can be used as the high-contrast front end of a high-power Nd:glass chirped pulse amplification (CPA) laser system. The energy of the stretched 1053 nm high-contrast seed pulse increases to 60 DJ by optimizing the frequency doubling crystal in the pulse cleaning device. After passing through a two-stage low-gain OPCPA, a 2-pass 2-rod Nd:glass amplifier, and a compressor the amplified pulse of 131 mJ/282 fs is achieved. The third-order correlation scanning measurement shows that the pulse contrast in the tens of ps range is about 10^-7-10^-8. With the high-contrast seed passing through the stretcher and compressor only, the contrast measurement indicates that the stretching-compressing process leads mainly to the contrast degradation of the amplified pulse.
文摘Many insect families have evolved to produce and detect complex singing patterns for the purposes of mating, display of dominance, predator escape, and other needs. While the mechanisms of sound production by insects have been thoroughly studied, man-machine exploitation of such mechanisms has remained unreported. We therefore describe a method to modulate the frequency spectrum in the chirp call of a singing insect, Gampsocleis gratiosa (Orthoptera: Tettigoniidae), a large katydid indigenous to China and commonly known as Guo Guo or Chinese Bush Cricket. The chirp modulation was achieved through the contact of a ribbon of lonic Polymer-Metal Composite (IPMC) against wing of the insect. The IPMC effectively served as an actuator when a small DC voltage was applied to the ribbon's faces. By applying a sequential on/off voltage waveform to the IPMC ribbon, the katydid's chirp was modulated in a corresponding manner. This configuration can be used as part of a broader application of using singing insects to harness their acoustic power to produce and propagate machine-induced messages into the acoustic environment.
基金the National Natural Science Founda-tion of China(No.61571282)the Open Project Program of the State Key Laboratory of Rail Traffic Control and Safety(No.RCS2017K012)。
文摘In this paper,a novel M-ary chirp modulation scheme is proposed on the basis of the energy concen-tration property of chirp signals in fractional domain.In the proposed scheme,chirp signals with diferent phases are multiplexed in the same time frequency bandwidth through reverse chirp rate to increase information rate.In addition,fractional filters based on fractional Fourier transform(FRFT)are designed to separate chirp signals of diferent chirp-rates in the receiver.Moreover,the theoretical performance of fractional filters and the error probability of M-ary chirp system are derived.Both theoretical analysis and simulation prove that the proposed scheme outperforms M-ary quadrature amplitude modulation(QAM)system in the anti-noise performance.
基金supported by Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory(KX152600015/ITD-U15006)National Natural Science Foundation of China(No.61401196)
文摘Sine Non-linear Chirp Keying(SNCK) is a kind of high-efficient modulation scheme, which provides a potential new beamforming method in communication and radar systems. It has been proved to have advantages in some parameter estimation issues over conventional modulation schemes. In this paper, a novel transform termed as Discrete Sinusoidal Frequency Modulation transform(DSFMT) is proposed. Then, the DSFMT of SNCK signal is deduced and classified into three types, based on which, the time-bandwidth product is estimated by the proposed algorithm. Simulation results show that the noise has a signifi cant impact on the localization of the peak value and the time-bandwidth product can be estimated by using local ratio values when.