Topological materials and metamaterials opened new paradigms to create and manipulate phases of matter with unconventional properties.Topological D-class phases(TDPs)are archetypes of the ten-fold classification of to...Topological materials and metamaterials opened new paradigms to create and manipulate phases of matter with unconventional properties.Topological D-class phases(TDPs)are archetypes of the ten-fold classification of topological phases with particle-hole symmetry.In two dimensions,TDPs support propagating topological edge modes that simulate the elusive Majorana elementary particles.Furthermore,a piercing ofπ-flux Dirac-solenoids in TDPs stabilizes localized Majorana excitations that can be braided for the purpose of topological quantum computation.Such two-dimensional(2D)TDPs have been a focus in the research frontier,but their experimental realizations are still under debate.Here,with a novel design scheme,we realize 2D TDPs in an acoustic crystal by synthesizing both the particle-hole and fermion-like time reversal symmetries for a wide range of frequencies.The design scheme leverages an enriched unit cell structure with real-valued couplings that emulate the targeted Hamiltonian of TDPs with complex hoppings:A technique that could unlock the realization of all topological classes with passive metamaterials.In our experiments,we realize a pair of TDPs with opposite Chern numbers in two independent sectors that are connected by an intrinsic fermion-like timereversal symmetry built in the system.We measure the acoustic Majorana-like helical edge modes and visualize their robust topological transport,thus revealing the unprecedented D and DIII class topologies with direct evidence.Our study opens up a new pathway for the experimental realization of two fundamental classes of topological phases and may offer new insights in fundamental physics,materials science,and phononic information processing.展开更多
The orbital degrees of freedom play a pivotal role in understanding fundamental phenomena in solid-state materials as well as exotic quantum states of matter including orbital superfluidity and topological semimetals....The orbital degrees of freedom play a pivotal role in understanding fundamental phenomena in solid-state materials as well as exotic quantum states of matter including orbital superfluidity and topological semimetals.Despite tremendous efforts in engineering synthetic cold-atom,as well as electronic and photonic lattices to explore orbital physics,thus far high orbitals in an important class of materials,namely,higher-order topological insulators(HOTIs),have not been realized.Here,we demonstrate p-orbital corner states in a photonic HOTI,unveiling their underlying topological invariant,symmetry protection,and nonlinearity-induced dynamical rotation.In a Kagome-type HOTI,we find that the topological protection of p-orbital corner states demands an orbital-hopping symmetry in addition to generalized chiral symmetry.Due to orbital hybridization,nontrivial topology of the p-orbital HOTI is“hidden”if bulk polarization is used as the topological invariant,but well manifested by the generalized winding number.Our work opens a pathway for the exploration of intriguing orbital phenomena mediated by higher-band topology applicable to a broad spectrum of systems.展开更多
The transition of strong-interaction matter from the hadronic phase to the quark-gluon plasma phase is a rapid crossover but not a true phase transition in nature.The true phase transition of strong-interaction matter...The transition of strong-interaction matter from the hadronic phase to the quark-gluon plasma phase is a rapid crossover but not a true phase transition in nature.The true phase transition of strong-interaction matter is expected to exist only in certain limits,e.g.chiral limit of massless quarks and etc.In this contribution to CNPC2023 Special Issue we present our recent studies on the true phase transition of strong-interaction matter in the chiral limit of massless quarks as well as its microscopic origin.The study is based on(2+1)-flavor lattice QCD simulations using highly improved staggered fermions,with pion masses ranging from 160 MeV down to 55 MeV.Utilizing a newly proposed method to compute the quark mass derivatives of the Dirac eigenvalue spectrum on the lattice,it is found that the axial U(1)anomaly is still manifested at 1.6T_(c),with a microscopic origin consistent with the dilute instanton gas approximation.Furthermore,based on lattice QCD results and a generalized Banks-Casher relation,it is found that the macroscopic singularity of the chiral phase transition is encoded in the correlation of the Dirac eigenvalue spectrum.Future research directions along these findings are also discussed,including the investigation of the temperature range between T_(c) and 1.6 T_(c) to understand the breakdown of the dilute instanton gas approximation and its connection to the chiral phase transition.展开更多
The application of the semiclassical description to a particle-core system with imbued chiral symmetry is presented.The classical features of the chiral geometry in atomic nuclei and the associated dynamics are invest...The application of the semiclassical description to a particle-core system with imbued chiral symmetry is presented.The classical features of the chiral geometry in atomic nuclei and the associated dynamics are investigated for various core deformations and single-particle alignments.Distinct dynamical characteristics are identified in specific angular momentum ranges,triaxiality and alignment conditions.Quantum observables will be extracted from the classical picture for a quantitative description of experimental data provided as numerical examples of the model’s performance.展开更多
Achieving tunable band gaps in a structure by external stimuli is of great importance in acoustic applications. This paper aims to investigate the tunability of band gaps in square-lattice-like elastic periodic struct...Achieving tunable band gaps in a structure by external stimuli is of great importance in acoustic applications. This paper aims to investigate the tunability of band gaps in square-lattice-like elastic periodic structures that are usually not featured with notable band gaps. Endowed with chirality, the periodic structures here are able to undergo imperfection-insensitive large deformation under extension or compression. The influences of geometric parameters on band gaps are discussed via the nonlinear finite element method. It is shown that the band gaps in such structures with curved beams can be very rich and, more importantly, can be efficiently and robustly tuned by applying appropriate mechanical loadings without inducing buckling. As expected, geometry plays a more significant role than material nonlinearity does in the evolution of band gaps. The dynamic tunability of band gaps through mechanical loading is further studied. Results show that closing, opening, and shifting of band gaps can be realized by exerting real-time global extension or compression on the structure. The proposed periodic structure with well-designed chiral symmetry can be useful in the design of particular acoustic devices.展开更多
The quark anomalous magnetic moment(AMM)is dynamically generated through spontaneous chiral symmetry breaking.It has been revealed that,even though its exact form is still unknown,the quark AMM is essential to explori...The quark anomalous magnetic moment(AMM)is dynamically generated through spontaneous chiral symmetry breaking.It has been revealed that,even though its exact form is still unknown,the quark AMM is essential to exploring quark matter properties and QCD phase structure under external magnetic fields.In this study,we take three different forms of the quark AMM and investigate its influence on the chiral phase transition under a magnetic field.In general,a negative(positive)quark AMM acts as a magnetic-catalyzer(magnetic-inhibitor)for chiral symmetry breaking.It is found that a constant quark AMM drives an unexpected 1st order chiral phase transition,a quark AMM proportional to the chiral condensate flips the sign on the chiral condensate,and a quark AMM proportional to the square of the chiral condensate suppresses the magnetic enhancement in the chiral condensate at finite temperatures while retaining the chiral crossover phase transition.We also evaluate the intrinsic temperature dependence of the effective AMM form by fitting the effective model result of the chiral condensate to lattice QCD data,which may have a nontrivial correlation with the chiral phase transition.展开更多
Noether’s theorem is one of the fundamental laws in physics,relating the symmetry of a physical system to its constant of motion and conservation law.On the other hand,there exist a variety of non-Hermitian parity-ti...Noether’s theorem is one of the fundamental laws in physics,relating the symmetry of a physical system to its constant of motion and conservation law.On the other hand,there exist a variety of non-Hermitian parity-time(PT)-symmetric systems,which exhibit novel quantum properties and have attracted increasing interest.In this work,we extend Noether’s theorem to a class of significant PT-symmetry systems for which the eigenvalues of the PT-symmetry Hamiltonian HPTchange from purely real numbers to purely imaginary numbers,and introduce a generalized expectation value of an operator based on biorthogonal quantum mechanics.We find that the generalized expectation value of a time-independent operator is a constant of motion when the operator presents a standard symmetry in the PT-symmetry unbroken regime,or a chiral symmetry in the PT-symmetry broken regime.In addition,we experimentally investigate the extended Noether’s theorem in PT-symmetry single-qubit and two-qubit systems using an optical setup.Our experiment demonstrates the existence of the constant of motion and reveals how this constant of motion can be used to judge whether the PT-symmetry of a system is broken.Furthermore,a novel phenomenon of masking quantum information is first observed in a PT-symmetry two-qubit system.This study not only contributes to full understanding of the relation between symmetry and conservation law in PT-symmetry physics,but also has potential applications in quantum information theory and quantum communication protocols.展开更多
With an external in-plane magnetic field, we show the emergence of a topological nodal superconducting phase of the two-dimensional topological surface states. This nodal superconducting phase is protected by the chir...With an external in-plane magnetic field, we show the emergence of a topological nodal superconducting phase of the two-dimensional topological surface states. This nodal superconducting phase is protected by the chiral symmetry with a non-zero magnetic field, and there are corresponding Majorana Fermi arcs(also known as flat band Andreev bound states) connecting the two Majorana nodes along the edges, similar to the case of Weyl semimetal. The topological nodal superconductor is an intermediate phase between two different chiral superconductors, and is stable against the effects of substrates. The two-dimensional effective theory of the nodal superconducting phase also captures the low energy behavior of a three-dimensional lattice model which describes the iron-based superconductor with a thin film geometry. The localizations of the Majorana nodes can be manipulated through external in-plane magnetic fields, which may introduce a non-trivial topological Berry phase between them.展开更多
Unraveling the key structural features to maximize the chiroptical properties is of significance for developing high-performance chiral materials.Here we present our first attempt to elucidate and understand the molec...Unraveling the key structural features to maximize the chiroptical properties is of significance for developing high-performance chiral materials.Here we present our first attempt to elucidate and understand the molecular design of excellent chiroptical properties via the combination of multiplicity and the alignment of subhelicenes.Two stereoisomeric PDI-bladed quintuple[6]helicenes,namely D_(5)-CRP and C_(2)-CRP,were revealed to show distinct spatial arrangements of subhelicenes.Circular dichroism(CD)spectra showed that the Cotton effects(Δε)are reaching 1,412 mol-1L cm-1for D_(5)-CRP and 669 mol^(-1)L cm^(-1)for C_(2)-CRP in the visible spectrum.The greatly amplifiedΔεrelative to the smaller analogue NPDH arises from the circular annulation of helicenes and high molecular symmetry that could significantly regulate the transition dipole moments and thereby make them tend to be(anti)parallel,as supported by TDDFT calculations for the rotatory strength(R).Consequently,the maximal dissymmetry factors(|g_(abs)|and|g_(lum)|)of this kind of chiral molecular carbon imides were estimated to be up to 0.021 and 0.012,respectively.This study provides a deep insight into the chiroptical properties of complicated chiral systems.展开更多
We study chiral symmetry restoration by analyzing thermal properties of QCD's(pseudo-)Goldstone bo-sons,especially the pion.The meson properties are obtained from the spectral densities of mesonic imaginary-time c...We study chiral symmetry restoration by analyzing thermal properties of QCD's(pseudo-)Goldstone bo-sons,especially the pion.The meson properties are obtained from the spectral densities of mesonic imaginary-time correlation functions.To obtain the correlation functions,we solve the Dyson-Schwinger equations and the inhomo-geneous Bethe-Salpeter equations in the leading symmetry-preserving rainbow-ladder approximation.In chiral limit,the pion and its partner sigma degenerate at the critical temperature T_(c).At T≥T_(c),it was found that the pion rapidly dissociates,which signals deconfinement phase transition.Beyond the chiral limit,the pion dissociation temperature can be used to define the pseudo-critical temperature of the chiral phase crossover,which is consistent with that ob-tained by the maximum point of chiral susceptibility.A parallel analysis for kaon and pseudoscalar ss suggests that heavymesons maysurviveabove T_(c).展开更多
Encircling an exceptional point(EP) in a parity-time(PT) symmetric system has shown great potential for chiral optical devices,such as chiral mode switching for symmetric and antisymmetric modes.However,to our best kn...Encircling an exceptional point(EP) in a parity-time(PT) symmetric system has shown great potential for chiral optical devices,such as chiral mode switching for symmetric and antisymmetric modes.However,to our best knowledge,chiral switching for polarization states has never been reported,although chiral polarization manipulation has significant applications in imaging,sensing,communication,etc.Here,inspired by the anti-PT symmetry,we demonstrate,for the first time to our best knowledge,an on-chip chiral polarizer by constructing a polarization-coupled anti-PT symmetric system.The transmission axes of the chiral polarizer are different for forward and backward propagation.A polarization extinction ratio of over 10 dB is achieved for both propagating directions.Moreover,a telecommunication experiment is performed to demonstrate the potential applications in polarization encoding signals.It provides a novel functionality for encircling-an-EP parametric evolution and offers a new approach for on-chip chiral polarization manipulation.展开更多
We survey contemporary studies of hadrons and strongly interacting quarks using QCD's Dyson-Schwinger equations, addressing the following aspects: confinement and dynamical chiral symmetry breaking; the hadron spe...We survey contemporary studies of hadrons and strongly interacting quarks using QCD's Dyson-Schwinger equations, addressing the following aspects: confinement and dynamical chiral symmetry breaking; the hadron spectrum; hadron elastic and transition form factors, from small-to large-Q2; parton distribution functions; the physics of hadrons containing one or more heavy quarks; and properties of the quark gluon plasma.展开更多
We revisit the two-component Majorana equation and derive it in a new form by linearizing the relativistic dispersion relation of a massive particle, in a way similar to that used to derive the Dirac equation. We are ...We revisit the two-component Majorana equation and derive it in a new form by linearizing the relativistic dispersion relation of a massive particle, in a way similar to that used to derive the Dirac equation. We are using thereby the Pauli spin matrices, corresponding to an irreducible representation of the Lorentz group, and a lucid and transparent algebraic approach exploiting the newly introduced spin-flip operator. Thus we can readily build up the Majorana version of the Dirac equation in its chiral representation. The Lorentz-invariant complex conjugation operation involves the spin-flip operator, and its connection to chiral symmetry is discussed. The eigenfunctions of the Majorana equation are calculated in a concise way.展开更多
基金the support from the National Key R&D Program of China(2022YFA1404400)the National Natural Science Foundation of China(12125504 and 12074281)+5 种基金the support from the National Natural Science Foundation of China(12047541)the Gusu Leading Innovation Scientists Program of Suzhou City,and the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutionsthe Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology(2020B1212030010)support from the US National Science Foundation(CMMI2131759)support from the US National Science Foundation(DMR-1823800 and CMMI-2131760)the U.S.Army Research Office through contract W911NF-23-1-0127。
文摘Topological materials and metamaterials opened new paradigms to create and manipulate phases of matter with unconventional properties.Topological D-class phases(TDPs)are archetypes of the ten-fold classification of topological phases with particle-hole symmetry.In two dimensions,TDPs support propagating topological edge modes that simulate the elusive Majorana elementary particles.Furthermore,a piercing ofπ-flux Dirac-solenoids in TDPs stabilizes localized Majorana excitations that can be braided for the purpose of topological quantum computation.Such two-dimensional(2D)TDPs have been a focus in the research frontier,but their experimental realizations are still under debate.Here,with a novel design scheme,we realize 2D TDPs in an acoustic crystal by synthesizing both the particle-hole and fermion-like time reversal symmetries for a wide range of frequencies.The design scheme leverages an enriched unit cell structure with real-valued couplings that emulate the targeted Hamiltonian of TDPs with complex hoppings:A technique that could unlock the realization of all topological classes with passive metamaterials.In our experiments,we realize a pair of TDPs with opposite Chern numbers in two independent sectors that are connected by an intrinsic fermion-like timereversal symmetry built in the system.We measure the acoustic Majorana-like helical edge modes and visualize their robust topological transport,thus revealing the unprecedented D and DIII class topologies with direct evidence.Our study opens up a new pathway for the experimental realization of two fundamental classes of topological phases and may offer new insights in fundamental physics,materials science,and phononic information processing.
基金the National Key R&D Program of China(2022YFA1404800)the National Natural Science Foundation of China(12134006,12274242)+4 种基金the Natural Science Foundation of Tianjin(21JCJQJC00050)the QuantiXLie Center of Excellence,a project co-financed by the Croatian Government and the European Union through the European Regional Development Fund the Competitiveness and Cohesion Operational Programme(KK.01.1.1.01.0004)the 66 Postdoctoral Science Grant of Chinathe NSERC Discovery Grantthe Canada Research Chair Programs.
文摘The orbital degrees of freedom play a pivotal role in understanding fundamental phenomena in solid-state materials as well as exotic quantum states of matter including orbital superfluidity and topological semimetals.Despite tremendous efforts in engineering synthetic cold-atom,as well as electronic and photonic lattices to explore orbital physics,thus far high orbitals in an important class of materials,namely,higher-order topological insulators(HOTIs),have not been realized.Here,we demonstrate p-orbital corner states in a photonic HOTI,unveiling their underlying topological invariant,symmetry protection,and nonlinearity-induced dynamical rotation.In a Kagome-type HOTI,we find that the topological protection of p-orbital corner states demands an orbital-hopping symmetry in addition to generalized chiral symmetry.Due to orbital hybridization,nontrivial topology of the p-orbital HOTI is“hidden”if bulk polarization is used as the topological invariant,but well manifested by the generalized winding number.Our work opens a pathway for the exploration of intriguing orbital phenomena mediated by higher-band topology applicable to a broad spectrum of systems.
文摘The transition of strong-interaction matter from the hadronic phase to the quark-gluon plasma phase is a rapid crossover but not a true phase transition in nature.The true phase transition of strong-interaction matter is expected to exist only in certain limits,e.g.chiral limit of massless quarks and etc.In this contribution to CNPC2023 Special Issue we present our recent studies on the true phase transition of strong-interaction matter in the chiral limit of massless quarks as well as its microscopic origin.The study is based on(2+1)-flavor lattice QCD simulations using highly improved staggered fermions,with pion masses ranging from 160 MeV down to 55 MeV.Utilizing a newly proposed method to compute the quark mass derivatives of the Dirac eigenvalue spectrum on the lattice,it is found that the axial U(1)anomaly is still manifested at 1.6T_(c),with a microscopic origin consistent with the dilute instanton gas approximation.Furthermore,based on lattice QCD results and a generalized Banks-Casher relation,it is found that the macroscopic singularity of the chiral phase transition is encoded in the correlation of the Dirac eigenvalue spectrum.Future research directions along these findings are also discussed,including the investigation of the temperature range between T_(c) and 1.6 T_(c) to understand the breakdown of the dilute instanton gas approximation and its connection to the chiral phase transition.
基金supported by a grant of the Ministry of Research,Innovation and Digitalization,CNCS-UEFISCDI,project number PN-III-P1-1.1-TE-2021-0109,within PNCDI III.
文摘The application of the semiclassical description to a particle-core system with imbued chiral symmetry is presented.The classical features of the chiral geometry in atomic nuclei and the associated dynamics are investigated for various core deformations and single-particle alignments.Distinct dynamical characteristics are identified in specific angular momentum ranges,triaxiality and alignment conditions.Quantum observables will be extracted from the classical picture for a quantitative description of experimental data provided as numerical examples of the model’s performance.
基金supported by the National Natural Science Foundation of China (Nos. 11532001, 11621062,and 11272281)open project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology)under Grant No. KFJJ16-04MPartial support from the Fundamental Research Funds for the Central Universities(No. 2016XZZX001-05)
文摘Achieving tunable band gaps in a structure by external stimuli is of great importance in acoustic applications. This paper aims to investigate the tunability of band gaps in square-lattice-like elastic periodic structures that are usually not featured with notable band gaps. Endowed with chirality, the periodic structures here are able to undergo imperfection-insensitive large deformation under extension or compression. The influences of geometric parameters on band gaps are discussed via the nonlinear finite element method. It is shown that the band gaps in such structures with curved beams can be very rich and, more importantly, can be efficiently and robustly tuned by applying appropriate mechanical loadings without inducing buckling. As expected, geometry plays a more significant role than material nonlinearity does in the evolution of band gaps. The dynamic tunability of band gaps through mechanical loading is further studied. Results show that closing, opening, and shifting of band gaps can be realized by exerting real-time global extension or compression on the structure. The proposed periodic structure with well-designed chiral symmetry can be useful in the design of particular acoustic devices.
基金Supported in part by the National Natural Science Foundation of China(12235016,12221005,11725523,11735007)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB34030000,XDPB15)+1 种基金start-up funding from the University of Chinese Academy of Sciences(UCAS)the Fundamental Research Funds for the Central Universities。
文摘The quark anomalous magnetic moment(AMM)is dynamically generated through spontaneous chiral symmetry breaking.It has been revealed that,even though its exact form is still unknown,the quark AMM is essential to exploring quark matter properties and QCD phase structure under external magnetic fields.In this study,we take three different forms of the quark AMM and investigate its influence on the chiral phase transition under a magnetic field.In general,a negative(positive)quark AMM acts as a magnetic-catalyzer(magnetic-inhibitor)for chiral symmetry breaking.It is found that a constant quark AMM drives an unexpected 1st order chiral phase transition,a quark AMM proportional to the chiral condensate flips the sign on the chiral condensate,and a quark AMM proportional to the square of the chiral condensate suppresses the magnetic enhancement in the chiral condensate at finite temperatures while retaining the chiral crossover phase transition.We also evaluate the intrinsic temperature dependence of the effective AMM form by fitting the effective model result of the chiral condensate to lattice QCD data,which may have a nontrivial correlation with the chiral phase transition.
基金supported by the National Natural Science Foundation of China(Grant Nos.12264040,12204311,11804228,11865013,and U21A20436)the Jiangxi Natural Science Foundation(Grant Nos.20212BAB211018,20192ACBL20051)+8 种基金the Project of Jiangxi Province Higher Educational Science and Technology Program(Grant Nos.GJJ190891,and GJJ211735)the Key-Area Research and Development Program of Guangdong Province(Grant No.2018B03-0326001)supported in part by the Nippon Telegraph and Telephone(NTT)Corporation Researchthe Japan Science and Technology(JST)Agency[via the Quantum Leap Flagship Program(Q-LEAP)Moonshot R&D Grant Number JPMJMS2061]the Japan Society for the Promotion of Science(JSPS)[via the Grants-in-Aid for Scientific Research(KAKENHI)Grant No.JP20H00134]the Army Research Office(ARO)(Grant No.W911NF-18-1-0358)the Asian Office of Aerospace Research and Development(AOARD)(Grant No.FA2386-20-1-4069)the Foundational Questions Institute Fund(FQXi)(Grant No.FQXi-IAF19-06)。
文摘Noether’s theorem is one of the fundamental laws in physics,relating the symmetry of a physical system to its constant of motion and conservation law.On the other hand,there exist a variety of non-Hermitian parity-time(PT)-symmetric systems,which exhibit novel quantum properties and have attracted increasing interest.In this work,we extend Noether’s theorem to a class of significant PT-symmetry systems for which the eigenvalues of the PT-symmetry Hamiltonian HPTchange from purely real numbers to purely imaginary numbers,and introduce a generalized expectation value of an operator based on biorthogonal quantum mechanics.We find that the generalized expectation value of a time-independent operator is a constant of motion when the operator presents a standard symmetry in the PT-symmetry unbroken regime,or a chiral symmetry in the PT-symmetry broken regime.In addition,we experimentally investigate the extended Noether’s theorem in PT-symmetry single-qubit and two-qubit systems using an optical setup.Our experiment demonstrates the existence of the constant of motion and reveals how this constant of motion can be used to judge whether the PT-symmetry of a system is broken.Furthermore,a novel phenomenon of masking quantum information is first observed in a PT-symmetry two-qubit system.This study not only contributes to full understanding of the relation between symmetry and conservation law in PT-symmetry physics,but also has potential applications in quantum information theory and quantum communication protocols.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11804223 (MLL, YW, HZZ, HLC, TYC, XL), 11474061 (XL), and 12174067 (XL))。
文摘With an external in-plane magnetic field, we show the emergence of a topological nodal superconducting phase of the two-dimensional topological surface states. This nodal superconducting phase is protected by the chiral symmetry with a non-zero magnetic field, and there are corresponding Majorana Fermi arcs(also known as flat band Andreev bound states) connecting the two Majorana nodes along the edges, similar to the case of Weyl semimetal. The topological nodal superconductor is an intermediate phase between two different chiral superconductors, and is stable against the effects of substrates. The two-dimensional effective theory of the nodal superconducting phase also captures the low energy behavior of a three-dimensional lattice model which describes the iron-based superconductor with a thin film geometry. The localizations of the Majorana nodes can be manipulated through external in-plane magnetic fields, which may introduce a non-trivial topological Berry phase between them.
基金supported by the National Natural Science Foundation of China(22122503,22235005,and 22275112)the Shandong Provincial Natural Science Foundation(ZR2019ZD50)。
文摘Unraveling the key structural features to maximize the chiroptical properties is of significance for developing high-performance chiral materials.Here we present our first attempt to elucidate and understand the molecular design of excellent chiroptical properties via the combination of multiplicity and the alignment of subhelicenes.Two stereoisomeric PDI-bladed quintuple[6]helicenes,namely D_(5)-CRP and C_(2)-CRP,were revealed to show distinct spatial arrangements of subhelicenes.Circular dichroism(CD)spectra showed that the Cotton effects(Δε)are reaching 1,412 mol-1L cm-1for D_(5)-CRP and 669 mol^(-1)L cm^(-1)for C_(2)-CRP in the visible spectrum.The greatly amplifiedΔεrelative to the smaller analogue NPDH arises from the circular annulation of helicenes and high molecular symmetry that could significantly regulate the transition dipole moments and thereby make them tend to be(anti)parallel,as supported by TDDFT calculations for the rotatory strength(R).Consequently,the maximal dissymmetry factors(|g_(abs)|and|g_(lum)|)of this kind of chiral molecular carbon imides were estimated to be up to 0.021 and 0.012,respectively.This study provides a deep insight into the chiroptical properties of complicated chiral systems.
基金Supported in part by the National Natural Science Foundation of China(12075117,11775112,11535005,11690030,11905104,11805024,11947406)Jiangsu Provincial Natural Science Foundation of China(BK20180323)。
文摘We study chiral symmetry restoration by analyzing thermal properties of QCD's(pseudo-)Goldstone bo-sons,especially the pion.The meson properties are obtained from the spectral densities of mesonic imaginary-time correlation functions.To obtain the correlation functions,we solve the Dyson-Schwinger equations and the inhomo-geneous Bethe-Salpeter equations in the leading symmetry-preserving rainbow-ladder approximation.In chiral limit,the pion and its partner sigma degenerate at the critical temperature T_(c).At T≥T_(c),it was found that the pion rapidly dissociates,which signals deconfinement phase transition.Beyond the chiral limit,the pion dissociation temperature can be used to define the pseudo-critical temperature of the chiral phase crossover,which is consistent with that ob-tained by the maximum point of chiral susceptibility.A parallel analysis for kaon and pseudoscalar ss suggests that heavymesons maysurviveabove T_(c).
基金National Natural Science Foundation of China(61805090, 62075075)National Key Research and Development Project of China (2018YFB2201901)。
文摘Encircling an exceptional point(EP) in a parity-time(PT) symmetric system has shown great potential for chiral optical devices,such as chiral mode switching for symmetric and antisymmetric modes.However,to our best knowledge,chiral switching for polarization states has never been reported,although chiral polarization manipulation has significant applications in imaging,sensing,communication,etc.Here,inspired by the anti-PT symmetry,we demonstrate,for the first time to our best knowledge,an on-chip chiral polarizer by constructing a polarization-coupled anti-PT symmetric system.The transmission axes of the chiral polarizer are different for forward and backward propagation.A polarization extinction ratio of over 10 dB is achieved for both propagating directions.Moreover,a telecommunication experiment is performed to demonstrate the potential applications in polarization encoding signals.It provides a novel functionality for encircling-an-EP parametric evolution and offers a new approach for on-chip chiral polarization manipulation.
基金Supported by the Project of Knowledge Innovation Program of the Chinese Academy of Sciences under Grant No. KJCX2.YW.W10Sistema Nacional de Investigadores+8 种基金CONACyT grant 46614-Fthe University of Adelaide and the Australian Research Council through Grant No. FL0992247Coordinación de la Investigación Científica (UMSNH) under Grant 4.10the U. S. Department of Energy, Office of Nuclear Physics, Grant No. DE-AC02-06CH11357Fundao de Amparo Pesquisa do Estado de So Paulo, Grant Nos. 2009/51296-1 and 2010/05772-3the National Natural Science Foundation of China under Grant Nos. 10425521, 10675002, 10705002, 10935001 and 11075052the Major State Basic Research Development Program, under Grant No. G2007CB815000Forschungszentrum Jülich GmbHthe U. S.National Science Foundation under Grant No. PHY-0903991, in conjunction with a CONACyT Mexico-USA Collaboration Grant
文摘We survey contemporary studies of hadrons and strongly interacting quarks using QCD's Dyson-Schwinger equations, addressing the following aspects: confinement and dynamical chiral symmetry breaking; the hadron spectrum; hadron elastic and transition form factors, from small-to large-Q2; parton distribution functions; the physics of hadrons containing one or more heavy quarks; and properties of the quark gluon plasma.
文摘We revisit the two-component Majorana equation and derive it in a new form by linearizing the relativistic dispersion relation of a massive particle, in a way similar to that used to derive the Dirac equation. We are using thereby the Pauli spin matrices, corresponding to an irreducible representation of the Lorentz group, and a lucid and transparent algebraic approach exploiting the newly introduced spin-flip operator. Thus we can readily build up the Majorana version of the Dirac equation in its chiral representation. The Lorentz-invariant complex conjugation operation involves the spin-flip operator, and its connection to chiral symmetry is discussed. The eigenfunctions of the Majorana equation are calculated in a concise way.