Potassium transporters play crucial roles in K^+ uptake and translocation in plants. However, so far little is known about the regulatory mechanism of potassium transporters. Here, we show that a Shaker-like potassiu...Potassium transporters play crucial roles in K^+ uptake and translocation in plants. However, so far little is known about the regulatory mechanism of potassium transporters. Here, we show that a Shaker-like potassium channel AtKC1, encoded by the AtLKT1 gene cloned from the Arabidopsis thaliana low-K^+ (LK)-tolerant mutant Atlktl, significantly regulates AKTl-mediated K^+ uptake under LK conditions. Under LK conditions, the Atkcl mutants maintained their root growth, whereas wild-type plants stopped their root growth. Lesion of AtKC1 significantly enhanced the tolerance of the Atkcl mutants to LK stress and markedly increased K^+ uptake and K^+ accumulation in the Atkclmutant roots under LK conditions. Electrophysiological results showed that AtKC1 inhibited the AKT1-mediated inward K^+ currents and negatively shifted the voltage dependence of AKT1 channels. These results demonstrate that the ‘silent' K^+ channel α-subunit AtKC1 negatively regulates the AKTl-mediated K^+ uptake in Arabidopsis roots and consequently alters the ratio of root-to-shoot under LK stress conditions.展开更多
Recently,the methodology of deep learning is used to improve the calculation accuracy of the Reynolds-averaged Navier-Stokes (RANS) model.In this paper,a neural network is designed to predict the Reynolds stress of a ...Recently,the methodology of deep learning is used to improve the calculation accuracy of the Reynolds-averaged Navier-Stokes (RANS) model.In this paper,a neural network is designed to predict the Reynolds stress of a channel flow of different Reynolds numbers.The rationality and the high efficiency of the neural network is validated by comparing with the results of the direct numerical simulation (DNS),the large eddy simulation (LES),and the deep neural network (DNN) of other studies.To further enhance the prediction accuracy,three methods are developed by using several algorithms and simplified models in the neural network.In the method 1.the regularization is introduced and it is found that the oscillation and the overfitting of the results are eflectively prevented.In the method 2,y^+ is embedded in the input variable while the combination of the invariants is simplified in the method 3.From the predicted results,it can be seen that by using the first two methods,the errors are reduced.Moreover,the method 3 shows considerable advantages in the DNS trend and the smoothness of a curve.Consequently,it is concluded that the DNNs can predict effectively the anisotropic Reynolds stress and is a promising technique of the computational fluid dynamics.展开更多
This paper investigates the bed shear stress based on the condition of the incipient motion of sediment in a uniform-flow flume covered with emergent rigid vegetation,which is represented by arrays of circular cylinde...This paper investigates the bed shear stress based on the condition of the incipient motion of sediment in a uniform-flow flume covered with emergent rigid vegetation,which is represented by arrays of circular cylinders arranged in a regular pattern.A total of 148 tests are performed to observe the influence of the vegetation density,bed slope,flow depth and sediment size on the bed shear stress.The tests reveal that when the sediment is in incipient motion,the resistances acting on the flow passing the rigid vegetation contain the vegetation resistance and the bed shear stress.This shear stress could be divided into two parts:the grain shear stress and the shear stress caused by sand dunes,which are the deformed bedform with the sediment incipient motion.An empirical relationship between the shear stress of the sand dune and vegetation density,the Froude number,the apparent vegetation layer velocity is developed.展开更多
The changes in external K^+ concentration affect plant root growth. However, the molecular mechanism for perceiving a K^+ signal to modulate root growth remains unknown. It is hypothesized that the K^+ channel AKTI...The changes in external K^+ concentration affect plant root growth. However, the molecular mechanism for perceiving a K^+ signal to modulate root growth remains unknown. It is hypothesized that the K^+ channel AKTI is involved in low K^+ sensing in the Arabidopsis root and subsequent regulation of root growth. Along with the decline of external K^+ concentration, the primary root growth of wild-type plants was gradually inhibited. However, the primary root of the akt1 mutant could still grow under low K^+(LK) conditions. Application of NAA inhibited akt1 root growth, but promoted wild-type root growth under LK conditions. By using the ProDR5:GFP and ProPIN1:PIN1-GFP lines, we found that LK treatment reduced auxin accumulation in wild-type root tips by degrading PIN1 proteins, which did not occur in the akt1 mutant. The LK-induced PIN1 degradation may be due to the inhibition of vesicle trafficking of PIN1 proteins. In conclusion, our findings indicate that AKT1 is required for an Arabidopsis response to changes in external K^+, and subsequent regulation of K^+-dependent root growth by modulating PINt degradation and auxin redistribution in the root.展开更多
The voltage-dependent anion channel (VDAC) plays an essential role in the permeability of mltochondrial membrane. In the present study, we isolated a novel VDAC gene (brvdac) based on the assembly of expressed seq...The voltage-dependent anion channel (VDAC) plays an essential role in the permeability of mltochondrial membrane. In the present study, we isolated a novel VDAC gene (brvdac) based on the assembly of expressed sequence tag sequences from Brassica rapa L. and explored its differential expression patterns In growth, tissues, abiotlc stress, and stress recovery. Results of a tissue-specific expression study in young seedlings Indicated that, of all tissues tested, brvdac expression was the highest in the leaves. Under cold, drought, and salt stresses, brvdac expression showed a transient Increase, and then returned to normal levels when the stress was removed. When plants were exposed to heat shock, there was no Increase in brvdac expression, whereas during recovery a quick and considerable increase in expression was observed. These observations indicate that dissimilar modulations of brvdactranscription may occur when plant cells encounter heat shock and the other three types of stress. In addition, phylogenetic analysis Implied that an earlier duplication of vdac probably occurred before the divergence between monocotyledons and dicotyledons.展开更多
Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type ...Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type calcium channels.T-type calcium channel blockers,such as pimozide and mibefradil,have been shown to prevent cerebral ischemia/reperfusion injury-induced brain injury.However,the role of Cav3.2 channels in cerebral ischemia/reperfusion injury remains unclear.Here,in vitro and in vivo models of cerebral ischemia/reperfusion injury were established using middle cerebral artery occlusion in mice and high glucose hypoxia/reoxygenation exposure in primary hippocampal neurons.The results showed that Cav3.2 expression was significantly upregulated in injured hippocampal tissue and primary hippocampal neurons.We further established a Cav3.2 gene-knockout mouse model of cerebral ischemia/reperfusion injury.Cav3.2 knockout markedly reduced infarct volume and brain water content,and alleviated neurological dysfunction after cerebral ischemia/reperfusion injury.Additionally,Cav3.2 knockout attenuated cerebral ischemia/reperfusion injury-induced oxidative stress,inflammatory response,and neuronal apoptosis.In the hippocampus of Cav3.2-knockout mice,calcineurin overexpression offset the beneficial effect of Cav3.2 knockout after cerebral ischemia/reperfusion injury.These findings suggest that the neuroprotective function of Cav3.2 knockout is mediated by calcineurin/nuclear factor of activated T cells 3 signaling.Findings from this study suggest that Cav3.2 could be a promising target for treatment of cerebral ischemia/reperfusion injury.展开更多
基金Acknowledgments We thank Dr Emily Liman (University of Southern California, USA) for providing the pGEMHE vector for the Xenopus oocyte experiments. We also thank Dr Richer Gaber (Northwestern Uni- versity, USA) for providing the yeast mutant strain with K+ transport deficiency. We are grateful to Dr Rainer Hedrich (University of Wurzburg, Germany) for critical discussion. This work was supported by the National Natural Science Foundation of China (grant no. 30830013 to WHW), the Beijing Municipal Education Commission (grant no. YB20081001901 to WHW) and the Program of Introducing Talents of Discipline to Universities (grant no. B06003 to WHW).
文摘Potassium transporters play crucial roles in K^+ uptake and translocation in plants. However, so far little is known about the regulatory mechanism of potassium transporters. Here, we show that a Shaker-like potassium channel AtKC1, encoded by the AtLKT1 gene cloned from the Arabidopsis thaliana low-K^+ (LK)-tolerant mutant Atlktl, significantly regulates AKTl-mediated K^+ uptake under LK conditions. Under LK conditions, the Atkcl mutants maintained their root growth, whereas wild-type plants stopped their root growth. Lesion of AtKC1 significantly enhanced the tolerance of the Atkcl mutants to LK stress and markedly increased K^+ uptake and K^+ accumulation in the Atkclmutant roots under LK conditions. Electrophysiological results showed that AtKC1 inhibited the AKT1-mediated inward K^+ currents and negatively shifted the voltage dependence of AKT1 channels. These results demonstrate that the ‘silent' K^+ channel α-subunit AtKC1 negatively regulates the AKTl-mediated K^+ uptake in Arabidopsis roots and consequently alters the ratio of root-to-shoot under LK stress conditions.
文摘Recently,the methodology of deep learning is used to improve the calculation accuracy of the Reynolds-averaged Navier-Stokes (RANS) model.In this paper,a neural network is designed to predict the Reynolds stress of a channel flow of different Reynolds numbers.The rationality and the high efficiency of the neural network is validated by comparing with the results of the direct numerical simulation (DNS),the large eddy simulation (LES),and the deep neural network (DNN) of other studies.To further enhance the prediction accuracy,three methods are developed by using several algorithms and simplified models in the neural network.In the method 1.the regularization is introduced and it is found that the oscillation and the overfitting of the results are eflectively prevented.In the method 2,y^+ is embedded in the input variable while the combination of the invariants is simplified in the method 3.From the predicted results,it can be seen that by using the first two methods,the errors are reduced.Moreover,the method 3 shows considerable advantages in the DNS trend and the smoothness of a curve.Consequently,it is concluded that the DNNs can predict effectively the anisotropic Reynolds stress and is a promising technique of the computational fluid dynamics.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2011CB403303)the China National Funds for Distinguished Young Scientists (Grant No. 51125034)the National Natural Science Foundation of China (Grant Nos. 50879019,51109065,51239003)
文摘This paper investigates the bed shear stress based on the condition of the incipient motion of sediment in a uniform-flow flume covered with emergent rigid vegetation,which is represented by arrays of circular cylinders arranged in a regular pattern.A total of 148 tests are performed to observe the influence of the vegetation density,bed slope,flow depth and sediment size on the bed shear stress.The tests reveal that when the sediment is in incipient motion,the resistances acting on the flow passing the rigid vegetation contain the vegetation resistance and the bed shear stress.This shear stress could be divided into two parts:the grain shear stress and the shear stress caused by sand dunes,which are the deformed bedform with the sediment incipient motion.An empirical relationship between the shear stress of the sand dune and vegetation density,the Froude number,the apparent vegetation layer velocity is developed.
基金supported by grants from the National Natural Science Foundation of China(31570243No.31622008No.31421062)
文摘The changes in external K^+ concentration affect plant root growth. However, the molecular mechanism for perceiving a K^+ signal to modulate root growth remains unknown. It is hypothesized that the K^+ channel AKTI is involved in low K^+ sensing in the Arabidopsis root and subsequent regulation of root growth. Along with the decline of external K^+ concentration, the primary root growth of wild-type plants was gradually inhibited. However, the primary root of the akt1 mutant could still grow under low K^+(LK) conditions. Application of NAA inhibited akt1 root growth, but promoted wild-type root growth under LK conditions. By using the ProDR5:GFP and ProPIN1:PIN1-GFP lines, we found that LK treatment reduced auxin accumulation in wild-type root tips by degrading PIN1 proteins, which did not occur in the akt1 mutant. The LK-induced PIN1 degradation may be due to the inhibition of vesicle trafficking of PIN1 proteins. In conclusion, our findings indicate that AKT1 is required for an Arabidopsis response to changes in external K^+, and subsequent regulation of K^+-dependent root growth by modulating PINt degradation and auxin redistribution in the root.
文摘The voltage-dependent anion channel (VDAC) plays an essential role in the permeability of mltochondrial membrane. In the present study, we isolated a novel VDAC gene (brvdac) based on the assembly of expressed sequence tag sequences from Brassica rapa L. and explored its differential expression patterns In growth, tissues, abiotlc stress, and stress recovery. Results of a tissue-specific expression study in young seedlings Indicated that, of all tissues tested, brvdac expression was the highest in the leaves. Under cold, drought, and salt stresses, brvdac expression showed a transient Increase, and then returned to normal levels when the stress was removed. When plants were exposed to heat shock, there was no Increase in brvdac expression, whereas during recovery a quick and considerable increase in expression was observed. These observations indicate that dissimilar modulations of brvdactranscription may occur when plant cells encounter heat shock and the other three types of stress. In addition, phylogenetic analysis Implied that an earlier duplication of vdac probably occurred before the divergence between monocotyledons and dicotyledons.
基金supported by the Natural Science Foundation of Anhui Province of China,No.2208085Y32Scientific Research Plan Project of Anhui Province of China,No.2022AH020076the Chen Xiao-Ping Foundation for the Development of Science and Technology of Hubei Province,No.CXPJJH12000005-07-115(all to CT).
文摘Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type calcium channels.T-type calcium channel blockers,such as pimozide and mibefradil,have been shown to prevent cerebral ischemia/reperfusion injury-induced brain injury.However,the role of Cav3.2 channels in cerebral ischemia/reperfusion injury remains unclear.Here,in vitro and in vivo models of cerebral ischemia/reperfusion injury were established using middle cerebral artery occlusion in mice and high glucose hypoxia/reoxygenation exposure in primary hippocampal neurons.The results showed that Cav3.2 expression was significantly upregulated in injured hippocampal tissue and primary hippocampal neurons.We further established a Cav3.2 gene-knockout mouse model of cerebral ischemia/reperfusion injury.Cav3.2 knockout markedly reduced infarct volume and brain water content,and alleviated neurological dysfunction after cerebral ischemia/reperfusion injury.Additionally,Cav3.2 knockout attenuated cerebral ischemia/reperfusion injury-induced oxidative stress,inflammatory response,and neuronal apoptosis.In the hippocampus of Cav3.2-knockout mice,calcineurin overexpression offset the beneficial effect of Cav3.2 knockout after cerebral ischemia/reperfusion injury.These findings suggest that the neuroprotective function of Cav3.2 knockout is mediated by calcineurin/nuclear factor of activated T cells 3 signaling.Findings from this study suggest that Cav3.2 could be a promising target for treatment of cerebral ischemia/reperfusion injury.