Detailed analysis of Land Use/Land Cover (LULC) using remote sensing data in complex irrigated basins provides complete profile for better water resource management and planning. Using remote sensing data, this stud...Detailed analysis of Land Use/Land Cover (LULC) using remote sensing data in complex irrigated basins provides complete profile for better water resource management and planning. Using remote sensing data, this study provides detailed land use maps of the Lower Chenab Canal irrigated region of Pakistan from 2005 to 2012 for LULC change detection. Major crop types are demarcated by identifying temporal profiles of NDVI using MODIS 250 m × 250 m spatial resolution data. Wheat and rice are found to be major crops in rabi and kharif seasons, respectively. Accuracy assessment of prepared maps is performed using three dif- ferent techniques: error matrix approach, comparison with ancillary data and with previous study. Producer and user accuracies for each class are calculated along with kappa coeffi- cients (K). The average overall accuracies for rabi and kharif are 82.83% and 78.21%, re- spectively. Producer and user accuracies for individual class range respectively between 72.5% to 77% and 70.1% to 84.3% for rabi and 76.6% to 90.2% and 72% to 84.7% for kharif. The K values range between 0.66 to 0.77 for rabi with average of 0.73, and from 0.69 to 0.74 with average of 0.71 for kharif. LULC change detection indicates that wheat and rice have less volatility of change in comparison with both rabi and kharif fodders. Transformation be- tween cotton and rice is less common due to their completely different cropping conditions. Results of spatial and temporal LULC distributions and their seasonal variations provide useful insights for establishing realistic LULC scenarios for hydrological studies.展开更多
Validity of CA-Markov in land use and cover change simulation was investigated at the Langat Basin, Selangor, Malaysia. CA-Markov validation was performed using validation metrics, allocation disagreement, quantity di...Validity of CA-Markov in land use and cover change simulation was investigated at the Langat Basin, Selangor, Malaysia. CA-Markov validation was performed using validation metrics, allocation disagreement, quantity disagreement, and figure of merit in a three-dimensional space. The figure of merit, quantity error, and allocation error for total landscape simulation using the 1990-1997 calibration data were 5.62%, 3.53%, and 6.13%, respectively. CA-Markov showed a poor performance for land use and cover change simulation due to uncertainties in the source data, the model, and future land use and cover change processes in the study area.展开更多
文摘Detailed analysis of Land Use/Land Cover (LULC) using remote sensing data in complex irrigated basins provides complete profile for better water resource management and planning. Using remote sensing data, this study provides detailed land use maps of the Lower Chenab Canal irrigated region of Pakistan from 2005 to 2012 for LULC change detection. Major crop types are demarcated by identifying temporal profiles of NDVI using MODIS 250 m × 250 m spatial resolution data. Wheat and rice are found to be major crops in rabi and kharif seasons, respectively. Accuracy assessment of prepared maps is performed using three dif- ferent techniques: error matrix approach, comparison with ancillary data and with previous study. Producer and user accuracies for each class are calculated along with kappa coeffi- cients (K). The average overall accuracies for rabi and kharif are 82.83% and 78.21%, re- spectively. Producer and user accuracies for individual class range respectively between 72.5% to 77% and 70.1% to 84.3% for rabi and 76.6% to 90.2% and 72% to 84.7% for kharif. The K values range between 0.66 to 0.77 for rabi with average of 0.73, and from 0.69 to 0.74 with average of 0.71 for kharif. LULC change detection indicates that wheat and rice have less volatility of change in comparison with both rabi and kharif fodders. Transformation be- tween cotton and rice is less common due to their completely different cropping conditions. Results of spatial and temporal LULC distributions and their seasonal variations provide useful insights for establishing realistic LULC scenarios for hydrological studies.
文摘Validity of CA-Markov in land use and cover change simulation was investigated at the Langat Basin, Selangor, Malaysia. CA-Markov validation was performed using validation metrics, allocation disagreement, quantity disagreement, and figure of merit in a three-dimensional space. The figure of merit, quantity error, and allocation error for total landscape simulation using the 1990-1997 calibration data were 5.62%, 3.53%, and 6.13%, respectively. CA-Markov showed a poor performance for land use and cover change simulation due to uncertainties in the source data, the model, and future land use and cover change processes in the study area.