Equimolar quinary diboride powders,with nominal composition of(Ti0.2 Hf0.2 Zr0.2 Nb0.2 Ta0.2)B2,were synthesized by boro/carbothermal reduction(BCTR)of oxide mixtures(MOx,M=Ti,Hf,Zr,Nb and Ta)using B4 C as source of B...Equimolar quinary diboride powders,with nominal composition of(Ti0.2 Hf0.2 Zr0.2 Nb0.2 Ta0.2)B2,were synthesized by boro/carbothermal reduction(BCTR)of oxide mixtures(MOx,M=Ti,Hf,Zr,Nb and Ta)using B4 C as source of B and C in vacuum.By adjusting the B4 C/MOxratios,diboride mixtures without detectable MOxwere obtained at 1600℃,while high-entropy diboride(HEB)powders with particle size of<1μm was obtained at 1800℃.The phase,morphology and solid solution evolution process of the HEB powders during the BCTR process were comprehensively investigated.Although X-ray diffraction pattern indicated the powders synthesized at 1800℃ were in a single-phase Al B2 structure,elemental mappings showed that(Ta,Ti)-rich and(Zr,Nb)-rich solid solution coexisted in the HEB powders.The distribution of niobium and zirconium atoms in HEB was unable to reach uniform until the HEB powders were spark plasma sintered at 2000°C.(Ti0.2 Hf0.2 Zr0.2 Nb0.2 Ta0.2)B2 ceramics with a relative density of 97.9%were obtained after spark plasma sintering the HEB powders at 2050℃ under 50 MPa.Rapid grain growth was found in this composition when the sintering temperature was increased from 2000 to 2050℃,and the averaged grain size increased from 6.67 to 41.2μm.HEB ceramics sintered at 2000℃ had a Vickers hardness of 22.44±0.56 GPa(under a load of 1 kg),a Young’s modulus of^500 GPa and a fracture toughness of 2.83±0.15 MPa m1/2.This is the first report for obtaining high density HEB ceramics without residual oxide phase,benefiting from the high quality HEB powders obtained.展开更多
To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000℃. TS and waste glass were used as the main raw materials, aluminium nitride (...To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000℃. TS and waste glass were used as the main raw materials, aluminium nitride (AIN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of A1N added (lwt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing A1N content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the aver- age pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AIN.展开更多
The Yb:Lu_(2)O_(3)precursor made up of spherical particles was synthesized through the co-precipitation method in the water/ethanol solvent.The 5 at% Yb:Lu_(2)O_(3)powder is in the cubic phase after calcination at 110...The Yb:Lu_(2)O_(3)precursor made up of spherical particles was synthesized through the co-precipitation method in the water/ethanol solvent.The 5 at% Yb:Lu_(2)O_(3)powder is in the cubic phase after calcination at 1100℃ for 4 h.The powder also consists of spherical nanoparticles with the average particle and grain sizes of 96 and 49 nm,respectively.The average grain size of the pre-sintered ceramic sample is 526 nm and that of the sample by hot isostatic pressing grows to 612 nm.The 1.0 mm-thick sample has an in-line transmittance of 81.6%(theoretical value of 82.2%)at 1100 nm.The largest absorption cross-section at 976 nm is 0.96×1^(0-20)cm^(2) with the emission cross-section at 1033 nm of 0.92×10^(-20)cm^(2) and the gain cross sections are calculated with the smallest population inversion parameter β of 0.059.The highest slope efficiency of 68.7% with the optical efficiency of 65.1% is obtained at 1033.3 nm in quasi-continuous wave(QCW)pumping.In the case of continuous wave(CW)pumping,the highest slope efficiency is 61.0% with the optical efficiency of 54.1%.The obtained laser performance indicates that Yb:Lu_(2)O_(3)ceramics have excellent resistance to thermal load stresses,which shows great potential in high-power solid-state laser applications.展开更多
基金financially supported by the National Natural Science Foundation of China (51521001 and 51832003)the Fundamental Research Funds for the Central Universities
文摘Equimolar quinary diboride powders,with nominal composition of(Ti0.2 Hf0.2 Zr0.2 Nb0.2 Ta0.2)B2,were synthesized by boro/carbothermal reduction(BCTR)of oxide mixtures(MOx,M=Ti,Hf,Zr,Nb and Ta)using B4 C as source of B and C in vacuum.By adjusting the B4 C/MOxratios,diboride mixtures without detectable MOxwere obtained at 1600℃,while high-entropy diboride(HEB)powders with particle size of<1μm was obtained at 1800℃.The phase,morphology and solid solution evolution process of the HEB powders during the BCTR process were comprehensively investigated.Although X-ray diffraction pattern indicated the powders synthesized at 1800℃ were in a single-phase Al B2 structure,elemental mappings showed that(Ta,Ti)-rich and(Zr,Nb)-rich solid solution coexisted in the HEB powders.The distribution of niobium and zirconium atoms in HEB was unable to reach uniform until the HEB powders were spark plasma sintered at 2000°C.(Ti0.2 Hf0.2 Zr0.2 Nb0.2 Ta0.2)B2 ceramics with a relative density of 97.9%were obtained after spark plasma sintering the HEB powders at 2050℃ under 50 MPa.Rapid grain growth was found in this composition when the sintering temperature was increased from 2000 to 2050℃,and the averaged grain size increased from 6.67 to 41.2μm.HEB ceramics sintered at 2000℃ had a Vickers hardness of 22.44±0.56 GPa(under a load of 1 kg),a Young’s modulus of^500 GPa and a fracture toughness of 2.83±0.15 MPa m1/2.This is the first report for obtaining high density HEB ceramics without residual oxide phase,benefiting from the high quality HEB powders obtained.
基金the Science and Technology Support Projects of Sichuan Province (No. 2014GZ0011)the Industry Promotion Projects of Panzhihua in China (No.2013CY-C-2) for their financial support
文摘To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000℃. TS and waste glass were used as the main raw materials, aluminium nitride (AIN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of A1N added (lwt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing A1N content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the aver- age pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AIN.
基金supported by the National Key R&D Program of China(Grant No.2017YFB0310500)the National Natural Science Foundation of China(Grant No.61575212)the Key Research Project of the Frontier Science of the Chinese Academy of Sciences(No.QYZDB-SSW-JSC022).
文摘The Yb:Lu_(2)O_(3)precursor made up of spherical particles was synthesized through the co-precipitation method in the water/ethanol solvent.The 5 at% Yb:Lu_(2)O_(3)powder is in the cubic phase after calcination at 1100℃ for 4 h.The powder also consists of spherical nanoparticles with the average particle and grain sizes of 96 and 49 nm,respectively.The average grain size of the pre-sintered ceramic sample is 526 nm and that of the sample by hot isostatic pressing grows to 612 nm.The 1.0 mm-thick sample has an in-line transmittance of 81.6%(theoretical value of 82.2%)at 1100 nm.The largest absorption cross-section at 976 nm is 0.96×1^(0-20)cm^(2) with the emission cross-section at 1033 nm of 0.92×10^(-20)cm^(2) and the gain cross sections are calculated with the smallest population inversion parameter β of 0.059.The highest slope efficiency of 68.7% with the optical efficiency of 65.1% is obtained at 1033.3 nm in quasi-continuous wave(QCW)pumping.In the case of continuous wave(CW)pumping,the highest slope efficiency is 61.0% with the optical efficiency of 54.1%.The obtained laser performance indicates that Yb:Lu_(2)O_(3)ceramics have excellent resistance to thermal load stresses,which shows great potential in high-power solid-state laser applications.