The deepwater of the northwestern South China Sea is located in the central to southern parts of the Qiongdongnan Basin (QDN Basin), which is a key site for hydrocarbon exploration in recent years. In this study, th...The deepwater of the northwestern South China Sea is located in the central to southern parts of the Qiongdongnan Basin (QDN Basin), which is a key site for hydrocarbon exploration in recent years. In this study, the authors did a comprehensive analysis of gravity-magnetic data, extensive 3D seismic survey, cores and cuttings, paleontology and geochemical indexes, proposed the mechanism of natural gas origin, identified different oil and gas systems, and established the model of hydrocarbon accumulations in the deep-water region. Our basin tectonic simulation indicates that the evolution of QDN Basin was controlled by multiple-phased tectonic movements, such as Indochina-Eurasian Plate collision, Tibetan Uplift, Red River faulting and the expansion of the South China Sea which is characterized by Paleogene rifting, Neogene depression, and Eocene intensive faulting and lacustrine deposits. The drilling results show that this region is dominated by marine- terrestrial transitional and neritic-bathyal facies from the early Oligocene. The Yacheng Formation of the early Oligocene is rich in organic matter and a main gas-source rock. According to the geological-geochemical data from the latest drilling wells, Lingshui, Baodao, Changchang Sags have good hydrocarbon-generating potentials, where two plays from the Paleogene and Neogene reservoirs were developed. Those reservoirs occur in central canyon structural-lithologic trap zone, Changchang marginal trap zone and southern fault terrace of Baodao Sag. Among them, the central canyon trap zone has a great potential for exploration because the various reservoir- forming elements are well developed, i.e., good coal-measure source rocks, sufficient reservoirs from the Neogene turbidity sandstone and submarine fan, faults connecting source rock and reservoirs, effective vertical migration, late stage aggregation and favorable structural-lithological composite trapping. These study results provide an important scientific basis for hydrocarbon exploration in this region, 展开更多
Over the past several years, a number of hydrocarbon reservoirs have been discovered in the deepwater area of Qiongdongnan Basin, northwestern South China Sea. These oil/gas fields demonstrate that the evolution of th...Over the past several years, a number of hydrocarbon reservoirs have been discovered in the deepwater area of Qiongdongnan Basin, northwestern South China Sea. These oil/gas fields demonstrate that the evolution of the deepwater sedimentary environment are controlling the formation and distribution of large-scale clastic reservoirs. Integration between seismic and borehole data were necessary to best clarify the distribution and quality of these deepwater reservoirs. Geochemical and paleobiological evidence from discrete samples was also applied to document specific information regarding the sedimentary environment. Results show that the Qiongdongnan Basin has existed as a thriving marine environment since Oligocene, when several rifting depressions developed throughout the entire Qiongdongnan Basin. Triggered by the faults activities, several distinct provenances supplied the coarse sediments, transporting and depositing them in deep parts of the rifting depressions. A fan delta system then formed nearby the source in the deeper area of these rifting depressions. The sedimentary environment of Qiongdongnan gradiationally became deepwater since early Miocene. Consequently, abundances of sediments were transported from Hainan Island and Southern Uplift, and then sunk into the basin center. The submarine fans revealed by many boreholes in this area verified them as good reservoir. Because the area reached its lowest sea level at late Miocene and the Southern Uplift subsidenced under sea level, not providing any sediment, so that the carbonate mesa and biorhythms characteristic of this area also developed during this period. In the west part of Qiongdongnan Basin, sediments transported from Vietnam increased in response to the Tibetan Uplift. Consequently, a central canyon developed along the center of Qiongdongnan Basin, which has been confirmed by several boreholes as a favorable hydrocarbon reservoir. The clarification of the deepwater sedimentary environment’s evolution is potentially highly beneficial to futu展开更多
基金China National Major Special Project under contract No.2011ZX05025-002
文摘The deepwater of the northwestern South China Sea is located in the central to southern parts of the Qiongdongnan Basin (QDN Basin), which is a key site for hydrocarbon exploration in recent years. In this study, the authors did a comprehensive analysis of gravity-magnetic data, extensive 3D seismic survey, cores and cuttings, paleontology and geochemical indexes, proposed the mechanism of natural gas origin, identified different oil and gas systems, and established the model of hydrocarbon accumulations in the deep-water region. Our basin tectonic simulation indicates that the evolution of QDN Basin was controlled by multiple-phased tectonic movements, such as Indochina-Eurasian Plate collision, Tibetan Uplift, Red River faulting and the expansion of the South China Sea which is characterized by Paleogene rifting, Neogene depression, and Eocene intensive faulting and lacustrine deposits. The drilling results show that this region is dominated by marine- terrestrial transitional and neritic-bathyal facies from the early Oligocene. The Yacheng Formation of the early Oligocene is rich in organic matter and a main gas-source rock. According to the geological-geochemical data from the latest drilling wells, Lingshui, Baodao, Changchang Sags have good hydrocarbon-generating potentials, where two plays from the Paleogene and Neogene reservoirs were developed. Those reservoirs occur in central canyon structural-lithologic trap zone, Changchang marginal trap zone and southern fault terrace of Baodao Sag. Among them, the central canyon trap zone has a great potential for exploration because the various reservoir- forming elements are well developed, i.e., good coal-measure source rocks, sufficient reservoirs from the Neogene turbidity sandstone and submarine fan, faults connecting source rock and reservoirs, effective vertical migration, late stage aggregation and favorable structural-lithological composite trapping. These study results provide an important scientific basis for hydrocarbon exploration in this region,
基金The National Science and Technology Major Project of China under contract No.2011ZX05025-002-02the National Natural Science Foundation of China under contract Nos 41476032 and 41372112
文摘Over the past several years, a number of hydrocarbon reservoirs have been discovered in the deepwater area of Qiongdongnan Basin, northwestern South China Sea. These oil/gas fields demonstrate that the evolution of the deepwater sedimentary environment are controlling the formation and distribution of large-scale clastic reservoirs. Integration between seismic and borehole data were necessary to best clarify the distribution and quality of these deepwater reservoirs. Geochemical and paleobiological evidence from discrete samples was also applied to document specific information regarding the sedimentary environment. Results show that the Qiongdongnan Basin has existed as a thriving marine environment since Oligocene, when several rifting depressions developed throughout the entire Qiongdongnan Basin. Triggered by the faults activities, several distinct provenances supplied the coarse sediments, transporting and depositing them in deep parts of the rifting depressions. A fan delta system then formed nearby the source in the deeper area of these rifting depressions. The sedimentary environment of Qiongdongnan gradiationally became deepwater since early Miocene. Consequently, abundances of sediments were transported from Hainan Island and Southern Uplift, and then sunk into the basin center. The submarine fans revealed by many boreholes in this area verified them as good reservoir. Because the area reached its lowest sea level at late Miocene and the Southern Uplift subsidenced under sea level, not providing any sediment, so that the carbonate mesa and biorhythms characteristic of this area also developed during this period. In the west part of Qiongdongnan Basin, sediments transported from Vietnam increased in response to the Tibetan Uplift. Consequently, a central canyon developed along the center of Qiongdongnan Basin, which has been confirmed by several boreholes as a favorable hydrocarbon reservoir. The clarification of the deepwater sedimentary environment’s evolution is potentially highly beneficial to futu