Breast phyllodes tumor(PT)is a rare fibroepithelial neoplasm with potential malignant behavior.Long non-coding RNAs(lncRNAs)play multifaceted roles in various cancers,but their involvement in breast PT remains largely...Breast phyllodes tumor(PT)is a rare fibroepithelial neoplasm with potential malignant behavior.Long non-coding RNAs(lncRNAs)play multifaceted roles in various cancers,but their involvement in breast PT remains largely unexplored.In this study,microarray was leveraged for the first time to investigate the role of lncRNA in PT.We identified lncRNA ZFPM2-AS1 was significantly upregulated in malignant PT,and its overexpression endowed PT with high tumor grade and adverse prognosis.Furthermore,we elucidated that ZFPM2-AS1 promotes the proliferation,migration,and invasion of malignant PT in vitro.Targeting ZFPM2-AS1 through nanomaterial-mediated siRNA delivery in patient-derived xenograft(PDX)model could effectively inhibit tumor progression in vivo.Mechanistically,our findings showed that ZFPM2-AS1 is competitively bound to CDC42,inhibiting ACK1 and STAT1 activation,thereby launching the transcription of TNFRSF19.In conclusion,our study provides evidence that ZFPM2-AS1 plays a pivotal role in the pathogenesis of breast PT,and suggests that ZFPM2-AS1 could serve as a prognostic indicator for patients with PT as well as a promising novel therapeutic target.展开更多
To the Editor:Kinase cell division cycle 7(CDC7),a cell division cycle protein,takes a vital role in mediating DNA replication1.CDC7 complexes in the nucleus can phosphorylate the minichromosome maintenance complex(MC...To the Editor:Kinase cell division cycle 7(CDC7),a cell division cycle protein,takes a vital role in mediating DNA replication1.CDC7 complexes in the nucleus can phosphorylate the minichromosome maintenance complex(MCM)family members that bind to chromosomes.In addition,CDC7 kinase,as a molecular switch regulating DNA replication,can mediate DNA damage signaling pathways to stimulate cell cycle termination as well as DNA replication2.Studies have shown that CDC7 is overexpressed in many types of cancer cells,and its overexpression was related to poor patient survival,tumor grade,genetic instability,aneuploidy and so on3.Therefore,CDC7 is a promising target for antitumor therapy.展开更多
The bacterial cell cycle consists of a series of genetically coordinated biochemical and biophysical events. In Caulobacter crescentus, CtrA is an essential cell cycle regulator that modulates many cell cycle processe...The bacterial cell cycle consists of a series of genetically coordinated biochemical and biophysical events. In Caulobacter crescentus, CtrA is an essential cell cycle regulator that modulates many cell cycle processes. In the present study, the role of the CtrA was investigated in Rhodobacter sphaeroides 2.4.1 by employing genetic, molecular, and bioinformatic approaches. Examination of the ctrA-null mutant revealed that the loss of CtrA did not affect growth characteristics and cell morphology in R. sphaeroides when grown under aerobic or photosynthetic growth conditions but slower growth was noticed in the anaerobic-dark-DMSO condition. Phylogenetic analyses demonstrated that CtrA has diversified its role in major lineages of α-Proteobacteria and has possibly been involved in adaptation to variable lifestyles. Analysis of the CtrA binding sites in the R. sphaeroides genome suggests that CtrA may regulate 127 genes involving different cellular processes. Protein homology searches revealed that only a small number of ctrA-regulated genes are homologous across C. crescentus, R. capsulatus, and R. sphaeroides. Comparison of the functions of putative ctrA-regulated genes in C. crescentus, R. capsulatus, and R. sphaeroides revealed that all three species possessed broad pathway control across a variety of cluster of orthologous gene functions (COGs). However, interestingly, it seems that the essentiality of CtrA in C. crescentus may depend more on the selective control that it exerts on a few critical cell cycle genes and pathways that are not controlled by CtrA in a similar fashion in R. capsulatus and R. sphaeroides.展开更多
Aim To investigate the influences of melatonin (MT) on the growth of HeLa cells in vitro. Methods Theantiprolfferation activities of MT were evaluated in HeLa cells by means of trypan blue dye exclusion and MTT vital ...Aim To investigate the influences of melatonin (MT) on the growth of HeLa cells in vitro. Methods Theantiprolfferation activities of MT were evaluated in HeLa cells by means of trypan blue dye exclusion and MTT vital staining.The morphological changes of HeLa cells induced by MT were observed under transmission electronic microscope. Cell divisioncycle influenced by MT was assessed by a flow cytometry. Results MT produced a certain inhibition of HeLa cells at the con-centration of 2 mmol@ L-1 and prolonged the TD. The fraction of cells inhibited was 61.0%. The IC. so of HeLa cells exposed toMT for 96 h was 2.039 mmol@ L- 1. The flow cytometric analyses showed that exposure to MT for 72 h reduced the number ofHeLa cells in phase S. Under electronic microscope, the HeLa cells exposed to MT for 72 h displayed morphological changesof necrosis, apoptosis, more hetero-chromosome and less somatic chromosome. Conclusion MT showed certain influences onthe growth of HeLa cells. Its mechanism may probably be attributable to reduction of the number of cells in phase S.展开更多
Objective To examine the expression of cell division cycle associated 2(CDCA 2) in pancreatic ductal adenocarcinoma(PDAC) and investigate its role in prognosis of PDAC patients.Methods This retrospective study include...Objective To examine the expression of cell division cycle associated 2(CDCA 2) in pancreatic ductal adenocarcinoma(PDAC) and investigate its role in prognosis of PDAC patients.Methods This retrospective study included 155 PDAC patients who underwent surgical treatment and complete post-operative follow-up.Clinicopathologic data were collected through clinical database.Tissue microarray was constructed and immunohistochemistry was performed to detect CDCA2 expression in the PDAC tumor tissues and adjacent non-tumor tissues.Clinicopathological characteristics between high and low CDCA2 expression were compared.Correlation of CDCA2 expressions with patients' survival was analyzed using Kaplan-Meier method and Cox regression analysis.Results Expression of CDCA2 in PDAC cells was significantly higher than that in adjacent non-tumor tissues(U=4056.5,P<0.001).Univariate analysis showed that CDCA2 expression [hazard ratio(HR)=1.574,95% confidence interval(CI)=1.014-2.443,P=0.043] and node metastasis(HR=1.704,95%CI=1.183-2.454,P=0.004) were significantly associated with prognosis.Cox regression analysis showed CDCA2 expression was not an independent prognostic risk factor(HR=1.418,95%CI=0.897-2.242,P=0.135) for PDCA patients.Stratification survival analysis demonstrated CDCA2 expression as an independent prognostic risk factor in male patients(HR=2.554,95%CI=1.446-4.511,P=0.003) or in non-perineural invasion patients(HR=2.290,95%CI=1.146-4.577,P=0.012).Conclusions CDCA2 is highly expressed in PDAC tumor tissue.Although CDCA2 is not an independent prognostic risk factor for PDAC patients,it might be used to help predict prognosis of male or non-perineural invasion patients of PDAC.展开更多
基金supported by the National Natural Science Foundation of China(82173054,82222029,82203085)the Guangdong Basic and Applied Basic Research Foundation(2022B1515020048,2022B1515020101,China)Guangzhou Science,Technology and Innovation Commission(202102010148,China).
文摘Breast phyllodes tumor(PT)is a rare fibroepithelial neoplasm with potential malignant behavior.Long non-coding RNAs(lncRNAs)play multifaceted roles in various cancers,but their involvement in breast PT remains largely unexplored.In this study,microarray was leveraged for the first time to investigate the role of lncRNA in PT.We identified lncRNA ZFPM2-AS1 was significantly upregulated in malignant PT,and its overexpression endowed PT with high tumor grade and adverse prognosis.Furthermore,we elucidated that ZFPM2-AS1 promotes the proliferation,migration,and invasion of malignant PT in vitro.Targeting ZFPM2-AS1 through nanomaterial-mediated siRNA delivery in patient-derived xenograft(PDX)model could effectively inhibit tumor progression in vivo.Mechanistically,our findings showed that ZFPM2-AS1 is competitively bound to CDC42,inhibiting ACK1 and STAT1 activation,thereby launching the transcription of TNFRSF19.In conclusion,our study provides evidence that ZFPM2-AS1 plays a pivotal role in the pathogenesis of breast PT,and suggests that ZFPM2-AS1 could serve as a prognostic indicator for patients with PT as well as a promising novel therapeutic target.
基金Zenji Research Laboratories for financial aid to this work
文摘To the Editor:Kinase cell division cycle 7(CDC7),a cell division cycle protein,takes a vital role in mediating DNA replication1.CDC7 complexes in the nucleus can phosphorylate the minichromosome maintenance complex(MCM)family members that bind to chromosomes.In addition,CDC7 kinase,as a molecular switch regulating DNA replication,can mediate DNA damage signaling pathways to stimulate cell cycle termination as well as DNA replication2.Studies have shown that CDC7 is overexpressed in many types of cancer cells,and its overexpression was related to poor patient survival,tumor grade,genetic instability,aneuploidy and so on3.Therefore,CDC7 is a promising target for antitumor therapy.
文摘The bacterial cell cycle consists of a series of genetically coordinated biochemical and biophysical events. In Caulobacter crescentus, CtrA is an essential cell cycle regulator that modulates many cell cycle processes. In the present study, the role of the CtrA was investigated in Rhodobacter sphaeroides 2.4.1 by employing genetic, molecular, and bioinformatic approaches. Examination of the ctrA-null mutant revealed that the loss of CtrA did not affect growth characteristics and cell morphology in R. sphaeroides when grown under aerobic or photosynthetic growth conditions but slower growth was noticed in the anaerobic-dark-DMSO condition. Phylogenetic analyses demonstrated that CtrA has diversified its role in major lineages of α-Proteobacteria and has possibly been involved in adaptation to variable lifestyles. Analysis of the CtrA binding sites in the R. sphaeroides genome suggests that CtrA may regulate 127 genes involving different cellular processes. Protein homology searches revealed that only a small number of ctrA-regulated genes are homologous across C. crescentus, R. capsulatus, and R. sphaeroides. Comparison of the functions of putative ctrA-regulated genes in C. crescentus, R. capsulatus, and R. sphaeroides revealed that all three species possessed broad pathway control across a variety of cluster of orthologous gene functions (COGs). However, interestingly, it seems that the essentiality of CtrA in C. crescentus may depend more on the selective control that it exerts on a few critical cell cycle genes and pathways that are not controlled by CtrA in a similar fashion in R. capsulatus and R. sphaeroides.
文摘Aim To investigate the influences of melatonin (MT) on the growth of HeLa cells in vitro. Methods Theantiprolfferation activities of MT were evaluated in HeLa cells by means of trypan blue dye exclusion and MTT vital staining.The morphological changes of HeLa cells induced by MT were observed under transmission electronic microscope. Cell divisioncycle influenced by MT was assessed by a flow cytometry. Results MT produced a certain inhibition of HeLa cells at the con-centration of 2 mmol@ L-1 and prolonged the TD. The fraction of cells inhibited was 61.0%. The IC. so of HeLa cells exposed toMT for 96 h was 2.039 mmol@ L- 1. The flow cytometric analyses showed that exposure to MT for 72 h reduced the number ofHeLa cells in phase S. Under electronic microscope, the HeLa cells exposed to MT for 72 h displayed morphological changesof necrosis, apoptosis, more hetero-chromosome and less somatic chromosome. Conclusion MT showed certain influences onthe growth of HeLa cells. Its mechanism may probably be attributable to reduction of the number of cells in phase S.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2012AA02A212)
文摘Objective To examine the expression of cell division cycle associated 2(CDCA 2) in pancreatic ductal adenocarcinoma(PDAC) and investigate its role in prognosis of PDAC patients.Methods This retrospective study included 155 PDAC patients who underwent surgical treatment and complete post-operative follow-up.Clinicopathologic data were collected through clinical database.Tissue microarray was constructed and immunohistochemistry was performed to detect CDCA2 expression in the PDAC tumor tissues and adjacent non-tumor tissues.Clinicopathological characteristics between high and low CDCA2 expression were compared.Correlation of CDCA2 expressions with patients' survival was analyzed using Kaplan-Meier method and Cox regression analysis.Results Expression of CDCA2 in PDAC cells was significantly higher than that in adjacent non-tumor tissues(U=4056.5,P<0.001).Univariate analysis showed that CDCA2 expression [hazard ratio(HR)=1.574,95% confidence interval(CI)=1.014-2.443,P=0.043] and node metastasis(HR=1.704,95%CI=1.183-2.454,P=0.004) were significantly associated with prognosis.Cox regression analysis showed CDCA2 expression was not an independent prognostic risk factor(HR=1.418,95%CI=0.897-2.242,P=0.135) for PDCA patients.Stratification survival analysis demonstrated CDCA2 expression as an independent prognostic risk factor in male patients(HR=2.554,95%CI=1.446-4.511,P=0.003) or in non-perineural invasion patients(HR=2.290,95%CI=1.146-4.577,P=0.012).Conclusions CDCA2 is highly expressed in PDAC tumor tissue.Although CDCA2 is not an independent prognostic risk factor for PDAC patients,it might be used to help predict prognosis of male or non-perineural invasion patients of PDAC.