AIM: To evaluate the effects of sulindac in inducing growth inhibition and apoptosis of human gastric cancer cells in comparison with human hepatocellular carcinoma (HCC) cells. METHODS: The human gastric cancer cell ...AIM: To evaluate the effects of sulindac in inducing growth inhibition and apoptosis of human gastric cancer cells in comparison with human hepatocellular carcinoma (HCC) cells. METHODS: The human gastric cancer cell lines MKN45 and MKN28 and human hepatocellular carcinoma cell lines HepG(2) and SMMC7721 were used for the study. Anti-proliferative effect was measured by MTT assay, and apoptosis was determined by Hoechst-33258 staining, electronography and DNA fragmentation. The protein of cyclooxygenase-2 (COX-2) and Bcl-2 were detected by Western dot blotting. RESULTS: Sulindac could initiate growth inhibition and apoptosis of MKN45, MKN28, HepG(2) and SMMC7721 cells in a dose-and time-dependent manner. Growth inhibitory activity and apoptosis were more sensitive in HepG(2) cells than in SMMC7721 cells, MKN45 and MKN28 cells. After 24 hours incubation with sulindac at 2mmol x L(-1) and 4mmol x L(-1), the level of COX-2 and Bcl-2 protein were lowered in MKN45, SMMC7721 and HepG(2) cells but not in MKN28 cells. CONCLUSION: Sulindac could inhibit the growth of gastric cancer cells and HCC cells effectively in vitro by apoptosis induction, which was associated with regression of COX-2 and Bcl-2 expression. The growth inhibition and apoptosis of HCC cells were greater than that of human gastric cancer cells. The different effects of apoptosis in gastric cancer cells may be related to the differentiation of the cells.展开更多
AIM: To study the relationship between Helicobacter pylori (H. pylori) and gastric carcinoma and its possible pathogenesis by H. pylori. METHODS: DNEL technique and immunohistochemical technique were used to study the...AIM: To study the relationship between Helicobacter pylori (H. pylori) and gastric carcinoma and its possible pathogenesis by H. pylori. METHODS: DNEL technique and immunohistochemical technique were used to study the state of apoptosis, proliferation and p53 gene expression. A total of 100 gastric mucosal biopsy specimens, including 20 normal mucosa, 30 H. pylori-negative and 30 H. pylori-positive gastric precancerous lesions along with 20 gastric carcinomas were studied. RESULTS: There were several apoptotic cells in the superficial epithelium and a few proliferative cells within the neck of gastric glands, and no p53 protein expression in normal mucosa. In gastric carcinoma, there were few apoptotic cells, while there were a large number of proliferative cells, and expression of p53 protein significantly was increased. In the phase of metaplasia, the apoptotic index (AI, 4.36%+/-1.95%), proliferative index (PI, 19.11%+/-6.79%) and positivity of p53 expression (46.7%) in H. pylori-positive group were higher than those in normal mucosa (P【0.01). AI in H. pylori-positive group was higher than that in H. pylori-negative group (3.81%+/-1.76%), PI in H. pylori-positive group was higher than that in H. pylori-negative group (12.25%+/-5.63%, P【0.01). In the phase of dysplasia, AI (2.31%+/-1.10%) in H. pylori-positive group was lower (3.05%+/-1.29%) than that in H. pylori-negative group, but PI (33.89%+/-11.65%) was significantly higher (22.09+/-8018%, P【0.01). In phases of metaplasia, dysplasia and gastric cancer in the H. pylori-positive group, AIs had an evidently graduall decreasing trend (P【0.01), while PIs had an evidently gradual increasing trend (P【0.05 or P【0.01), and there was also a trend of gradual increase in the expression of p53 gene. CONCLUSION: In the course of the formation of gastric carcinoma, proliferation of gastric mucosa can be greatly increased by H. pylori, and H. pylori can induce apoptosis in the phase of metaplasia, but in the phase of dysplasia H. pylori can inhibit cellu展开更多
基金Supported by Asahi Medical Foundation,No.00-2000-03
文摘AIM: To evaluate the effects of sulindac in inducing growth inhibition and apoptosis of human gastric cancer cells in comparison with human hepatocellular carcinoma (HCC) cells. METHODS: The human gastric cancer cell lines MKN45 and MKN28 and human hepatocellular carcinoma cell lines HepG(2) and SMMC7721 were used for the study. Anti-proliferative effect was measured by MTT assay, and apoptosis was determined by Hoechst-33258 staining, electronography and DNA fragmentation. The protein of cyclooxygenase-2 (COX-2) and Bcl-2 were detected by Western dot blotting. RESULTS: Sulindac could initiate growth inhibition and apoptosis of MKN45, MKN28, HepG(2) and SMMC7721 cells in a dose-and time-dependent manner. Growth inhibitory activity and apoptosis were more sensitive in HepG(2) cells than in SMMC7721 cells, MKN45 and MKN28 cells. After 24 hours incubation with sulindac at 2mmol x L(-1) and 4mmol x L(-1), the level of COX-2 and Bcl-2 protein were lowered in MKN45, SMMC7721 and HepG(2) cells but not in MKN28 cells. CONCLUSION: Sulindac could inhibit the growth of gastric cancer cells and HCC cells effectively in vitro by apoptosis induction, which was associated with regression of COX-2 and Bcl-2 expression. The growth inhibition and apoptosis of HCC cells were greater than that of human gastric cancer cells. The different effects of apoptosis in gastric cancer cells may be related to the differentiation of the cells.
基金Supported by National Ninth Five-Year Study Program for Tacking Key Scientific Problems.No.96-906-01-04
文摘AIM: To study the relationship between Helicobacter pylori (H. pylori) and gastric carcinoma and its possible pathogenesis by H. pylori. METHODS: DNEL technique and immunohistochemical technique were used to study the state of apoptosis, proliferation and p53 gene expression. A total of 100 gastric mucosal biopsy specimens, including 20 normal mucosa, 30 H. pylori-negative and 30 H. pylori-positive gastric precancerous lesions along with 20 gastric carcinomas were studied. RESULTS: There were several apoptotic cells in the superficial epithelium and a few proliferative cells within the neck of gastric glands, and no p53 protein expression in normal mucosa. In gastric carcinoma, there were few apoptotic cells, while there were a large number of proliferative cells, and expression of p53 protein significantly was increased. In the phase of metaplasia, the apoptotic index (AI, 4.36%+/-1.95%), proliferative index (PI, 19.11%+/-6.79%) and positivity of p53 expression (46.7%) in H. pylori-positive group were higher than those in normal mucosa (P【0.01). AI in H. pylori-positive group was higher than that in H. pylori-negative group (3.81%+/-1.76%), PI in H. pylori-positive group was higher than that in H. pylori-negative group (12.25%+/-5.63%, P【0.01). In the phase of dysplasia, AI (2.31%+/-1.10%) in H. pylori-positive group was lower (3.05%+/-1.29%) than that in H. pylori-negative group, but PI (33.89%+/-11.65%) was significantly higher (22.09+/-8018%, P【0.01). In phases of metaplasia, dysplasia and gastric cancer in the H. pylori-positive group, AIs had an evidently graduall decreasing trend (P【0.01), while PIs had an evidently gradual increasing trend (P【0.05 or P【0.01), and there was also a trend of gradual increase in the expression of p53 gene. CONCLUSION: In the course of the formation of gastric carcinoma, proliferation of gastric mucosa can be greatly increased by H. pylori, and H. pylori can induce apoptosis in the phase of metaplasia, but in the phase of dysplasia H. pylori can inhibit cellu