The flow structure and the unsteady mechanism of the unsteady cavitating flow are reviewed in this paper. The flow patterns and structures in different cavitation regime, for the attached cavitation and the vortical c...The flow structure and the unsteady mechanism of the unsteady cavitating flow are reviewed in this paper. The flow patterns and structures in different cavitation regime, for the attached cavitation and the vortical cavitation, are shown with both the visualization and the quantitative information. The attached cavitating flow around the Clark-Y hydrofoil and the vortical cavitating flow around the Tulin hydrofoil are considered. In particular, the phenomena such as the large-scale vortex structure and the re-entrant flow associated with the cloud cavitation, and the cavitating vortex street's forming and crumbling are described. The evolution of the cavitation structure in the transient sheet/cloud cavity forming, along with the cavity collapse induced by the re-entrant flow and the shock wave propagation are discussed. The perspective future research of higher fidelity simulations, and the accurate identifications of the cavitating vortex structure is commented.展开更多
Computational Fluid Dynamics (CFD) simulations of cavitating flow through water hydraulic poppet valves were performed using advanced RNG k-epsilon turbulence model. The flow was turbulent, incompressible and unsteady...Computational Fluid Dynamics (CFD) simulations of cavitating flow through water hydraulic poppet valves were performed using advanced RNG k-epsilon turbulence model. The flow was turbulent, incompressible and unsteady, for Reynolds numbers greater than 43 000. The working fluid was water, and the structure of the valve was simplified as a two dimensional axisymmetric geometrical model. Flow field visualization was numerically achieved. The effects of inlet velocity, outlet pressure, opening size as well as poppet angle on cavitation intensity in the poppet valve were numerically investigated. Experimental flow visualization was conducted to capture cavitation images near the orifice in the poppet valve with 30° poppet angle using high speed video camera. The binary cavitating flow field distribution obtained from digital processing of the original cavitation image showed a good agreement with the numerical result.展开更多
Cavitating flows inside a diesel injection nozzle hole were simulated using a two-fluid model. Attention was focused on the complex cavitation processes and flow characteristics under constant inlet pressure and fluct...Cavitating flows inside a diesel injection nozzle hole were simulated using a two-fluid model. Attention was focused on the complex cavitation processes and flow characteristics under constant inlet pressure and fluctuant inlet pressure modes. To validate the two-fluid model, model predictions were compared with the experimental data available in the literatures, and good agreement was achieved. The numerical results show that the appearance of supercavitation in the diesel nozzle hole induces obvious changes of flow field structures and exit flow conditions. The distributions of liquid phase turbulent kinetic energy and exit velocity profiles corresponding to the supercavitation regime indicate the potential for promoting the primary breakup of a diesel jet. Furthermore, the upstream pressure fluctuations significantly influence the cavitation processes. Both partial cavitation and supercavitation show unsteady behaviors as the rapid rise or fall of upstream pressure.展开更多
An approach of modeling viscosity, unsteady partially cavitating flows around lifting bodies is presented. By em ploying an one-fluid Navier-Stokers solver, the algorithm is proved to be able to handle two-dimensiona...An approach of modeling viscosity, unsteady partially cavitating flows around lifting bodies is presented. By em ploying an one-fluid Navier-Stokers solver, the algorithm is proved to be able to handle two-dimensional laminar cavitating flows at moderate Reynolds numbe r. Based on the state equation of water-vapor mixture, the constructive relatio ns of densities and pressures are established. To numerically simulate the cavi ty wall, different pseudo transition of density models are presumed. The finite-volume method is adopted and the algorithm can be extended to three-dimensional cavitating flows.展开更多
Cavitation typically occurs when the fluid pressure is lower than the vapor pressure in a local thermodynamic state,and the flow is frequently unsteady and turbulent.The Reynolds-Averaged Navier-Stokes(RANS)approach...Cavitation typically occurs when the fluid pressure is lower than the vapor pressure in a local thermodynamic state,and the flow is frequently unsteady and turbulent.The Reynolds-Averaged Navier-Stokes(RANS)approach has been popular for turbulent flow computations.The most widely used ones,such as the standard k-εmodel,have well-recognized deficiencies when treating time dependent flow field.To identify ways to improve the predictive capability of the current RANS-based engineering turbulence closures,conditional averaging is adopted for the Navier-Stokes equation,and one more parameter,based on the filter size,is introduced into the k-εmodel.In the Partially Averaged Navier-Stokes(PANS)model,the filter width is mainly controlled by the ratio of unresolved-to-total kinetic energy1f.This model is assessed in unsteady cavitating flows over a Clark-Y hydrofoil.From the experimental validations regarding the forces,frequencies,cavity visualizations and velocity distributions,the PANS model is shown to improve the predictive capability considerably,in comparison to the standard k-ε model,and also,it is observed the value of1f in the PANS model has substantial influence on the predicting result.As the filter width1f is decreased,the PANS model can effectively reduce the eddy viscosity near the closure region which can significantly influence the capture of the detach cavity,and this model can reproduce the time-averaged velocity quantitatively around the hydrofoil.展开更多
Cavitation is a complex multiphase flow phenomenon with an abrupt transient phase change between the liquid and the vapor, including multiscale vortical motions. The transient cavitation dynamics is closely associated...Cavitation is a complex multiphase flow phenomenon with an abrupt transient phase change between the liquid and the vapor, including multiscale vortical motions. The transient cavitation dynamics is closely associated with the evolution of the cavitation vortex structures. The present paper investigates the cavitation vortex dynamics using different vortex identification methods, including the vorticity method, the Q criterion method, the Omega method (Ω), the method and the Rortex method. The Q criterion is an eigenvalue-based criterion, and in the Ω method, the parameter is normalized, is independent of the threshold value and in most conditions Ω= 0.52 . The Rortex method is based on an eigenvector-based criterion. Numerical simulations are conducted using the implemented compressible cavitation solver in the open source software OpenFOAM for the sheet/cloud cavitating flows around a NACA66 (mod) hydrofoil fixed at a = 6°,= 1.25 and Re = 7.96 × 10^5 . The flow is characterized by the alternate interactions of the re-entrant flow and the collapse induced shock wave. Results include the vapor structures and the vortex dynamics in the unsteady sheet/cloud cavitating flows, with emphasis on the vortex structures in thecavitation region, the cavity interface, the cavity closure, the cavity wakes, and the foil wakes with the shedding cavity. The comparisons of the various methods, including that the vorticity method, the Q criterion method, the Ω method, the λ2 method and the Rortex method, show the performances of different methods in identifying the cavitation vortex structures. Generally, during the attached cavity growth stage, the Q criteria can well predict the vortex structures in the cavitation region and at the foil trailing edge in the pure liquid region, while with the Ω method and the Rortex method, the vortex structures outside the attached cavity and on the foil pressure side can also be predicted. The λ2 method can well predict the vortex structures in the cavity closure region. During the re展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51839001,51679005 and 91752105)the Natural Science Foundation of Beijing(Grant No.3172029).
文摘The flow structure and the unsteady mechanism of the unsteady cavitating flow are reviewed in this paper. The flow patterns and structures in different cavitation regime, for the attached cavitation and the vortical cavitation, are shown with both the visualization and the quantitative information. The attached cavitating flow around the Clark-Y hydrofoil and the vortical cavitating flow around the Tulin hydrofoil are considered. In particular, the phenomena such as the large-scale vortex structure and the re-entrant flow associated with the cloud cavitation, and the cavitating vortex street's forming and crumbling are described. The evolution of the cavitation structure in the transient sheet/cloud cavity forming, along with the cavity collapse induced by the re-entrant flow and the shock wave propagation are discussed. The perspective future research of higher fidelity simulations, and the accurate identifications of the cavitating vortex structure is commented.
文摘Computational Fluid Dynamics (CFD) simulations of cavitating flow through water hydraulic poppet valves were performed using advanced RNG k-epsilon turbulence model. The flow was turbulent, incompressible and unsteady, for Reynolds numbers greater than 43 000. The working fluid was water, and the structure of the valve was simplified as a two dimensional axisymmetric geometrical model. Flow field visualization was numerically achieved. The effects of inlet velocity, outlet pressure, opening size as well as poppet angle on cavitation intensity in the poppet valve were numerically investigated. Experimental flow visualization was conducted to capture cavitation images near the orifice in the poppet valve with 30° poppet angle using high speed video camera. The binary cavitating flow field distribution obtained from digital processing of the original cavitation image showed a good agreement with the numerical result.
基金Supported by the National Natural Science Foundation of China, Key Project Fund-ing (Grant No. 50636040)Major State Basic Research Development Program (Grant No. 2007CB210001)
文摘Cavitating flows inside a diesel injection nozzle hole were simulated using a two-fluid model. Attention was focused on the complex cavitation processes and flow characteristics under constant inlet pressure and fluctuant inlet pressure modes. To validate the two-fluid model, model predictions were compared with the experimental data available in the literatures, and good agreement was achieved. The numerical results show that the appearance of supercavitation in the diesel nozzle hole induces obvious changes of flow field structures and exit flow conditions. The distributions of liquid phase turbulent kinetic energy and exit velocity profiles corresponding to the supercavitation regime indicate the potential for promoting the primary breakup of a diesel jet. Furthermore, the upstream pressure fluctuations significantly influence the cavitation processes. Both partial cavitation and supercavitation show unsteady behaviors as the rapid rise or fall of upstream pressure.
文摘An approach of modeling viscosity, unsteady partially cavitating flows around lifting bodies is presented. By em ploying an one-fluid Navier-Stokers solver, the algorithm is proved to be able to handle two-dimensional laminar cavitating flows at moderate Reynolds numbe r. Based on the state equation of water-vapor mixture, the constructive relatio ns of densities and pressures are established. To numerically simulate the cavi ty wall, different pseudo transition of density models are presumed. The finite-volume method is adopted and the algorithm can be extended to three-dimensional cavitating flows.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50679001, 50979004)the Fundation from State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology
文摘Cavitation typically occurs when the fluid pressure is lower than the vapor pressure in a local thermodynamic state,and the flow is frequently unsteady and turbulent.The Reynolds-Averaged Navier-Stokes(RANS)approach has been popular for turbulent flow computations.The most widely used ones,such as the standard k-εmodel,have well-recognized deficiencies when treating time dependent flow field.To identify ways to improve the predictive capability of the current RANS-based engineering turbulence closures,conditional averaging is adopted for the Navier-Stokes equation,and one more parameter,based on the filter size,is introduced into the k-εmodel.In the Partially Averaged Navier-Stokes(PANS)model,the filter width is mainly controlled by the ratio of unresolved-to-total kinetic energy1f.This model is assessed in unsteady cavitating flows over a Clark-Y hydrofoil.From the experimental validations regarding the forces,frequencies,cavity visualizations and velocity distributions,the PANS model is shown to improve the predictive capability considerably,in comparison to the standard k-ε model,and also,it is observed the value of1f in the PANS model has substantial influence on the predicting result.As the filter width1f is decreased,the PANS model can effectively reduce the eddy viscosity near the closure region which can significantly influence the capture of the detach cavity,and this model can reproduce the time-averaged velocity quantitatively around the hydrofoil.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51839001, 91752105).
文摘Cavitation is a complex multiphase flow phenomenon with an abrupt transient phase change between the liquid and the vapor, including multiscale vortical motions. The transient cavitation dynamics is closely associated with the evolution of the cavitation vortex structures. The present paper investigates the cavitation vortex dynamics using different vortex identification methods, including the vorticity method, the Q criterion method, the Omega method (Ω), the method and the Rortex method. The Q criterion is an eigenvalue-based criterion, and in the Ω method, the parameter is normalized, is independent of the threshold value and in most conditions Ω= 0.52 . The Rortex method is based on an eigenvector-based criterion. Numerical simulations are conducted using the implemented compressible cavitation solver in the open source software OpenFOAM for the sheet/cloud cavitating flows around a NACA66 (mod) hydrofoil fixed at a = 6°,= 1.25 and Re = 7.96 × 10^5 . The flow is characterized by the alternate interactions of the re-entrant flow and the collapse induced shock wave. Results include the vapor structures and the vortex dynamics in the unsteady sheet/cloud cavitating flows, with emphasis on the vortex structures in thecavitation region, the cavity interface, the cavity closure, the cavity wakes, and the foil wakes with the shedding cavity. The comparisons of the various methods, including that the vorticity method, the Q criterion method, the Ω method, the λ2 method and the Rortex method, show the performances of different methods in identifying the cavitation vortex structures. Generally, during the attached cavity growth stage, the Q criteria can well predict the vortex structures in the cavitation region and at the foil trailing edge in the pure liquid region, while with the Ω method and the Rortex method, the vortex structures outside the attached cavity and on the foil pressure side can also be predicted. The λ2 method can well predict the vortex structures in the cavity closure region. During the re