Objective To review the literature on the clinical progress in cauda equina syndrome (CES), including the epidemic history, pathogenesis, diagnosis, treatment policy and prognosis. Data sources All reports on CES in...Objective To review the literature on the clinical progress in cauda equina syndrome (CES), including the epidemic history, pathogenesis, diagnosis, treatment policy and prognosis. Data sources All reports on CES in the literature were searched in PubMed, Ovid, Springer, Elsevier, and the Chinese Biomedical Literature Disk using the key terms "cauda equina syndrome", "diagnosis", "treatment", "prognosis" and "evidence-based medicine". Study selection Original milestone articles and critical reviews written by major pioneer investigators about the cauda equina syndrome were selected. Results CES is rare, both atraumatically and traumatically. CES is variable, depending on the etiology of the syndrome. Males and females are equally affected. The incidence of The most common cause of CES is herniation of a lumbar intervertebral disc. CES symptoms may have sudden onset and evolve rapidly or sometimes chronic ally. Each type of CES has different typical signs and symptoms. Low back pain may be the most significant symptoms, accompanied by sciatica, lower extremities weakness, saddle or perianal hypoesthesia, sexual impotence, and sphincter dysfunction. MRI is usually the preferred investigation approach. Patients who have had CES are difficult to return to a normal status. Conclusions The diagnosis of CES is primarily based on a careful history inquiry and clinical examination, assisted by elective radiologic investigations. Early diagnosis and early surgical decompression are crucial for a favorable outcome in most CES cases.展开更多
This study established a dog model of acute multiple cauda equina constriction by experimental constriction injury (48 hours) of the lumbosacral central processes in dorsal root ganglia neurons. The repair effect of...This study established a dog model of acute multiple cauda equina constriction by experimental constriction injury (48 hours) of the lumbosacral central processes in dorsal root ganglia neurons. The repair effect of intrathecal injection of brain-derived neurotrophic factor with 15 mg encapsulated biodegradable poly(lactide-co-glycolide) nanoparticles on this injury was then analyzed. Dorsal root ganglion cells (LT) of all experimental dogs were analyzed using hematoxylin-eosin staining and immunohistochemistry at 1,2 and 4 weeks following model induction. Intrathecal injection of brain-derived neurotrophic factor can relieve degeneration and inflammation, and elevate the expression of brain-derived neurotrophic factor in sensory neurons of compressed dorsal root ganglion Simultaneously, intrathecal injection of brain-derived neurotrophic factor obviously improved neurological function in the dog model of acute multiple cauda equina constriction. Results verified that sustained intraspinal delivery of brain-derived neurotrophic factor encapsulated in biodegradable nanoparticles promoted the repair of histomorphology and function of neurons within the dorsal root ganglia in dogs with acute and severe cauda equina syndrome.展开更多
No reports have described experiments designed to determine the strength characteristics of spinal nerve roots and rami radiculares for the purpose of explaining the complexity of symptoms of medullary cone lesions an...No reports have described experiments designed to determine the strength characteristics of spinal nerve roots and rami radiculares for the purpose of explaining the complexity of symptoms of medullary cone lesions and cauda equina syndrome. In this study, to explain the pathogenesis of cauda equina syndrome, monoaxial tensile tests were performed to determine the strength characteristics of spinal nerve roots and rami radiculares, and analysis was conducted to evaluate the stress-strain relationship and strength characteristics. Using the same tensile test device, the nerve root and ramus radiculares isolated from the spinal cords of pigs were subjected to the tensile test and stress relaxation test at load strain rates of 0.1, 1, 10, and 100 s-1 under identical settings. The tensile strength of the nerve root was not rate dependent, while the ramus radiculares tensile strength tended to decrease as the strain rate increased. These findings provide important insights into cauda equina symptoms, radiculopathy, and clinical symptoms of the medullary cone.展开更多
文摘Objective To review the literature on the clinical progress in cauda equina syndrome (CES), including the epidemic history, pathogenesis, diagnosis, treatment policy and prognosis. Data sources All reports on CES in the literature were searched in PubMed, Ovid, Springer, Elsevier, and the Chinese Biomedical Literature Disk using the key terms "cauda equina syndrome", "diagnosis", "treatment", "prognosis" and "evidence-based medicine". Study selection Original milestone articles and critical reviews written by major pioneer investigators about the cauda equina syndrome were selected. Results CES is rare, both atraumatically and traumatically. CES is variable, depending on the etiology of the syndrome. Males and females are equally affected. The incidence of The most common cause of CES is herniation of a lumbar intervertebral disc. CES symptoms may have sudden onset and evolve rapidly or sometimes chronic ally. Each type of CES has different typical signs and symptoms. Low back pain may be the most significant symptoms, accompanied by sciatica, lower extremities weakness, saddle or perianal hypoesthesia, sexual impotence, and sphincter dysfunction. MRI is usually the preferred investigation approach. Patients who have had CES are difficult to return to a normal status. Conclusions The diagnosis of CES is primarily based on a careful history inquiry and clinical examination, assisted by elective radiologic investigations. Early diagnosis and early surgical decompression are crucial for a favorable outcome in most CES cases.
基金supported by grants from the Medical Scientific Fund and Intensive Research of Nanjing Military Area Command of Chinese PLA, No.Nan2007-13 and Nan 08Z003the Medical Scientific Fund and Research of Chinese PLA during the 12th Five-Year Plan Period,No.CWS11J260
文摘This study established a dog model of acute multiple cauda equina constriction by experimental constriction injury (48 hours) of the lumbosacral central processes in dorsal root ganglia neurons. The repair effect of intrathecal injection of brain-derived neurotrophic factor with 15 mg encapsulated biodegradable poly(lactide-co-glycolide) nanoparticles on this injury was then analyzed. Dorsal root ganglion cells (LT) of all experimental dogs were analyzed using hematoxylin-eosin staining and immunohistochemistry at 1,2 and 4 weeks following model induction. Intrathecal injection of brain-derived neurotrophic factor can relieve degeneration and inflammation, and elevate the expression of brain-derived neurotrophic factor in sensory neurons of compressed dorsal root ganglion Simultaneously, intrathecal injection of brain-derived neurotrophic factor obviously improved neurological function in the dog model of acute multiple cauda equina constriction. Results verified that sustained intraspinal delivery of brain-derived neurotrophic factor encapsulated in biodegradable nanoparticles promoted the repair of histomorphology and function of neurons within the dorsal root ganglia in dogs with acute and severe cauda equina syndrome.
文摘No reports have described experiments designed to determine the strength characteristics of spinal nerve roots and rami radiculares for the purpose of explaining the complexity of symptoms of medullary cone lesions and cauda equina syndrome. In this study, to explain the pathogenesis of cauda equina syndrome, monoaxial tensile tests were performed to determine the strength characteristics of spinal nerve roots and rami radiculares, and analysis was conducted to evaluate the stress-strain relationship and strength characteristics. Using the same tensile test device, the nerve root and ramus radiculares isolated from the spinal cords of pigs were subjected to the tensile test and stress relaxation test at load strain rates of 0.1, 1, 10, and 100 s-1 under identical settings. The tensile strength of the nerve root was not rate dependent, while the ramus radiculares tensile strength tended to decrease as the strain rate increased. These findings provide important insights into cauda equina symptoms, radiculopathy, and clinical symptoms of the medullary cone.