In this paper, two kinds of convolution integral equations with both Cauchy kernel and reflection are discussed. Using Fourier transformation theory they can be transformed into Riemann boundary value problems with bo...In this paper, two kinds of convolution integral equations with both Cauchy kernel and reflection are discussed. Using Fourier transformation theory they can be transformed into Riemann boundary value problems with both discontinuous coefficients and reflection. And we give a new method, by which the general solution and the condition of solvability are obtained respectively.展开更多
In this paper, we set up and discuss a kind of singular integral differential equation with convolution kernel and Canchy kernel. By Fourier transform and some lemmas, we turn this class of equations into Riemann boun...In this paper, we set up and discuss a kind of singular integral differential equation with convolution kernel and Canchy kernel. By Fourier transform and some lemmas, we turn this class of equations into Riemann boundary value problems, and obtain the general solution and the condition of solvability in class {0}.展开更多
This paper is devoted to studying the approximate solution of singular integral equations by means of Chebyshev polynomials. Some examples are presented to illustrate the method.
This article addresses the nonlinear state estimation problem where the conventional Gaussian assumption is completely relaxed.Here,the uncertainties in process and measurements are assumed non-Gaussian,such that the ...This article addresses the nonlinear state estimation problem where the conventional Gaussian assumption is completely relaxed.Here,the uncertainties in process and measurements are assumed non-Gaussian,such that the maximum correntropy criterion(MCC)is chosen to replace the conventional minimum mean square error criterion.Furthermore,the MCC is realized using Gaussian as well as Cauchy kernels by defining an appropriate cost function.Simulation results demonstrate the superior estimation accuracy of the developed estimators for two nonlinear estimation problems.展开更多
This article, first gives the estimaties of two modulus, namely, generalized Lebesgue constant and modulus of generalized singular integral quadrature formulas, then applies them to obtain the error bounds of the oper...This article, first gives the estimaties of two modulus, namely, generalized Lebesgue constant and modulus of generalized singular integral quadrature formulas, then applies them to obtain the error bounds of the operator BL^Pm to the operator B.展开更多
In this article, we present approximate solution of the two-dimensional singular nonlinear mixed Volterra-Fredholm integral equations (V-FIE), which is deduced by using new strategy (combined Laplace homotopy perturba...In this article, we present approximate solution of the two-dimensional singular nonlinear mixed Volterra-Fredholm integral equations (V-FIE), which is deduced by using new strategy (combined Laplace homotopy perturbation method (LHPM)). Here we consider the V-FIE with Cauchy kernel. Solved examples illustrate that the proposed strategy is powerful, effective and very simple.展开更多
In 1965, Lu Yu-Qian discovered that the Poisson kernel of the homogenous domain S m,p,q={Z∈Cm×m, Z1∈Cm×p,Z2 ∈Cq×m|2i1( Z-Z+)-Z1Z1′-Z2′Z2】0} does not satisfy the Laplace-Beltrami equation associate...In 1965, Lu Yu-Qian discovered that the Poisson kernel of the homogenous domain S m,p,q={Z∈Cm×m, Z1∈Cm×p,Z2 ∈Cq×m|2i1( Z-Z+)-Z1Z1′-Z2′Z2】0} does not satisfy the Laplace-Beltrami equation associated with the Bergman metric when S m,p,q is not symmetric. However the map T0:Z→Z, Z1→Z1 , Z2→Z2 transforms S m,p,q into a domain S I (m, m + p + q) which can be mapped by the Cayley transformation into the classical domains R I (m, m + p + q). The pull back of the Bergman metric of R I (m, m + p + q) to S m,p,q is a Riemann metric ds 2 which is not a Khler metric and even not a Hermitian metric in general. It is proved that the Laplace-Beltrami operator associated with the metric ds 2 when it acts on the Poisson kernel of S m,p,q equals 0. Consequently, the Cauchy formula of S m,p,q can be obtained from the Poisson formula.展开更多
In this paper, by using holomorphic support f unction of strictly pseudoconvex domain on Stein manifolds and the kernel define d by DEMAILY J P and Laurent Thiebaut, we construct two integral operators T q and S q whi...In this paper, by using holomorphic support f unction of strictly pseudoconvex domain on Stein manifolds and the kernel define d by DEMAILY J P and Laurent Thiebaut, we construct two integral operators T q and S q which are both belong to C s+α p,q-1 (D) and ob tain integral representation of the solution of (p,q)-form b-equation on the boundary of pseudoconvex domain in Stein manifolds and the L s p,q extimates for the solution.展开更多
文摘In this paper, two kinds of convolution integral equations with both Cauchy kernel and reflection are discussed. Using Fourier transformation theory they can be transformed into Riemann boundary value problems with both discontinuous coefficients and reflection. And we give a new method, by which the general solution and the condition of solvability are obtained respectively.
基金Supported by the Qufu Normal University Youth Fund(XJ201218)
文摘In this paper, we set up and discuss a kind of singular integral differential equation with convolution kernel and Canchy kernel. By Fourier transform and some lemmas, we turn this class of equations into Riemann boundary value problems, and obtain the general solution and the condition of solvability in class {0}.
文摘This paper is devoted to studying the approximate solution of singular integral equations by means of Chebyshev polynomials. Some examples are presented to illustrate the method.
基金Rahul Radhakrishnan received the B.Tech.degree in Applied Electronics and Instrumentation from the Government Engineering College,Calicut,India,in 2010 and the M.Tech.degreein Control Systems from the Department of Electrical Engineering,National Institute of Technology Kurukshetra,India,in 2013.He received the Ph.D.degree from the Department of Electrical Engineering,Indian Institute of Technology Patna,India,in 2018.Currently,he is workingasan Assistant Professor in the Department of Electrical Engineering,Sardar Vallabhbhai National Institute of Technology,Surat,Gujarat,India.His main research interests include nonlinear filtering,aerospace,and underwater target tracking.
文摘This article addresses the nonlinear state estimation problem where the conventional Gaussian assumption is completely relaxed.Here,the uncertainties in process and measurements are assumed non-Gaussian,such that the maximum correntropy criterion(MCC)is chosen to replace the conventional minimum mean square error criterion.Furthermore,the MCC is realized using Gaussian as well as Cauchy kernels by defining an appropriate cost function.Simulation results demonstrate the superior estimation accuracy of the developed estimators for two nonlinear estimation problems.
文摘This article, first gives the estimaties of two modulus, namely, generalized Lebesgue constant and modulus of generalized singular integral quadrature formulas, then applies them to obtain the error bounds of the operator BL^Pm to the operator B.
文摘In this article, we present approximate solution of the two-dimensional singular nonlinear mixed Volterra-Fredholm integral equations (V-FIE), which is deduced by using new strategy (combined Laplace homotopy perturbation method (LHPM)). Here we consider the V-FIE with Cauchy kernel. Solved examples illustrate that the proposed strategy is powerful, effective and very simple.
基金supported by National Natural Science Foundation of China (Grant Nos. 10671194 and 10731080/A01010501)
文摘In 1965, Lu Yu-Qian discovered that the Poisson kernel of the homogenous domain S m,p,q={Z∈Cm×m, Z1∈Cm×p,Z2 ∈Cq×m|2i1( Z-Z+)-Z1Z1′-Z2′Z2】0} does not satisfy the Laplace-Beltrami equation associated with the Bergman metric when S m,p,q is not symmetric. However the map T0:Z→Z, Z1→Z1 , Z2→Z2 transforms S m,p,q into a domain S I (m, m + p + q) which can be mapped by the Cayley transformation into the classical domains R I (m, m + p + q). The pull back of the Bergman metric of R I (m, m + p + q) to S m,p,q is a Riemann metric ds 2 which is not a Khler metric and even not a Hermitian metric in general. It is proved that the Laplace-Beltrami operator associated with the metric ds 2 when it acts on the Poisson kernel of S m,p,q equals 0. Consequently, the Cauchy formula of S m,p,q can be obtained from the Poisson formula.
文摘In this paper, by using holomorphic support f unction of strictly pseudoconvex domain on Stein manifolds and the kernel define d by DEMAILY J P and Laurent Thiebaut, we construct two integral operators T q and S q which are both belong to C s+α p,q-1 (D) and ob tain integral representation of the solution of (p,q)-form b-equation on the boundary of pseudoconvex domain in Stein manifolds and the L s p,q extimates for the solution.