The hybrid cascaded high-voltage direct current(HVDC)transmission system has various operation modes,and some operation modes have sharply increasing requirements for protection rapidity,while the traditional pilot di...The hybrid cascaded high-voltage direct current(HVDC)transmission system has various operation modes,and some operation modes have sharply increasing requirements for protection rapidity,while the traditional pilot differential protection(PDP)has poor rapidity,and even refuses to operate when faults occur on the DC line.Therefore,a novel pilot protection scheme based on traveling wave characteristics is proposed.First,the adaptability of the traditional PDP applied in engineering is analyzed for different operation modes.Then,the expressions of the forward traveling wave(FTW)and backward traveling wave(BTW)on the rectifier side and the inverter side are derived for different fault locations.From the theoretical derivation,the difference between the BTW and FTW on the rectifier side is less than zero,and the same is true on the inverter side.However,in the event of an external fault of DC line,the difference between the BTW and FTW at nearfault terminal protection installation point is greater than zero.Therefore,by summing over the product of the difference between BTW and FTW of the rectifier side and that of the inverter side,the fault identification criterion is constructed.The simulation results show that the proposed pilot protection scheme can quickly and reliably identify the short-circuit faults of DC line in different operation modes.展开更多
In DC distributed power systems(DPSs),the complex impedance interactions possibly lead to DC bus voltage oscillation or collapse.In previous research,the stability analysis of DPSs is implemented based on mathematical...In DC distributed power systems(DPSs),the complex impedance interactions possibly lead to DC bus voltage oscillation or collapse.In previous research,the stability analysis of DPSs is implemented based on mathematical analysis in control theory.The specific mechanisms of the instability of the cascade system have not been intuitively clarified.In this paper,the stability analysis of DPSs based on the traditional Nyquist criterion is simplified to the resonance analysis of the seriesconnected port impedance(Z=R+jX)of source and load converters.It reveals that the essential reason for impedance instability of a DC cascade system is that the negative damping characteristic(R<0)of the port the overall impedance amplifies the internal resonance source at reactance zero-crossing frequency.The simplified stability criterion for DC cascade systems can be concluded as:in the negative damping frequency ranges(R<0),there exists no zero-crossing point of the reactance component(i.e.,X=0).According to the proposed stability criterion,the oscillation modes of cascade systems are classified.A typical one is the internal impedance instability excited by the negative damping,and the other one is that the external disturbance amplified by negativity in a low stability margin.Thus,the impedance reshaping method for stability improvement of the system can be further specified.The validity of the simplified criterion is verified theoretically and experimentally by a positive damping reshaping method.展开更多
With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role ...With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method.展开更多
基金supported in part by the National Natural Science Foundation of China(No.51977183)。
文摘The hybrid cascaded high-voltage direct current(HVDC)transmission system has various operation modes,and some operation modes have sharply increasing requirements for protection rapidity,while the traditional pilot differential protection(PDP)has poor rapidity,and even refuses to operate when faults occur on the DC line.Therefore,a novel pilot protection scheme based on traveling wave characteristics is proposed.First,the adaptability of the traditional PDP applied in engineering is analyzed for different operation modes.Then,the expressions of the forward traveling wave(FTW)and backward traveling wave(BTW)on the rectifier side and the inverter side are derived for different fault locations.From the theoretical derivation,the difference between the BTW and FTW on the rectifier side is less than zero,and the same is true on the inverter side.However,in the event of an external fault of DC line,the difference between the BTW and FTW at nearfault terminal protection installation point is greater than zero.Therefore,by summing over the product of the difference between BTW and FTW of the rectifier side and that of the inverter side,the fault identification criterion is constructed.The simulation results show that the proposed pilot protection scheme can quickly and reliably identify the short-circuit faults of DC line in different operation modes.
基金supported by National Key Research and Development Program of China(2018YFB0904100)Science and Technology Project of SGCC(SGHB0000KXJS1800685).
文摘In DC distributed power systems(DPSs),the complex impedance interactions possibly lead to DC bus voltage oscillation or collapse.In previous research,the stability analysis of DPSs is implemented based on mathematical analysis in control theory.The specific mechanisms of the instability of the cascade system have not been intuitively clarified.In this paper,the stability analysis of DPSs based on the traditional Nyquist criterion is simplified to the resonance analysis of the seriesconnected port impedance(Z=R+jX)of source and load converters.It reveals that the essential reason for impedance instability of a DC cascade system is that the negative damping characteristic(R<0)of the port the overall impedance amplifies the internal resonance source at reactance zero-crossing frequency.The simplified stability criterion for DC cascade systems can be concluded as:in the negative damping frequency ranges(R<0),there exists no zero-crossing point of the reactance component(i.e.,X=0).According to the proposed stability criterion,the oscillation modes of cascade systems are classified.A typical one is the internal impedance instability excited by the negative damping,and the other one is that the external disturbance amplified by negativity in a low stability margin.Thus,the impedance reshaping method for stability improvement of the system can be further specified.The validity of the simplified criterion is verified theoretically and experimentally by a positive damping reshaping method.
基金This work was supported by National Natural Science Foundation of China under Grant U1909201,Distributed active learning theory and method for operational situation awareness of active distribution network.
文摘With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method.