Resources and environment carrying capacity is central to not only regional sustainable development but also major function-oriented zoning. This paper presents an evaluation index system for resources and environment...Resources and environment carrying capacity is central to not only regional sustainable development but also major function-oriented zoning. This paper presents an evaluation index system for resources and environment carrying capacity based on four aspects of carrying capacity(i.e., water resources, land resources, the environment, and ecosystems) by using a square deviation decision-making method, and on the basis of above effort evaluates the resources and environment carrying capacity across 31 provincial regions in China(not including Hong Kong, Macao and Taiwan regions of China). In addition, this paper evaluates the current state of socio-economic development, and analyzes the spatial distribution of resources and environment pressure. The results showed that distinct spatial differences in resources and environment carrying capacity and pressure across provincial regions. Resources and environment pressure is affected by both comprehensive resources and environment carrying capacity and socio-economic development. Regions subjected to lower degrees of resources and environment pressure will be restricted by resources and environmental problems through future courses of development owing to excessively low carrying capacities. By contrast, regions with higher comprehensive resources and environment carrying capacity will be subjected to excessively high levels of resources and environment pressure because of rapid socio-economic development. Both of resources and environment carrying capacity and pressure must therefore be considered in the allocation of country-binding targets to provincial regions.展开更多
The study of water resources carrying capacity(WRCC),a major component of resources and environment carrying capacity(RECC),began relatively recently. However,WRCC has witnessed a rapid development in terms of con...The study of water resources carrying capacity(WRCC),a major component of resources and environment carrying capacity(RECC),began relatively recently. However,WRCC has witnessed a rapid development in terms of concept,calculation methods,and empirical research in recent years. WRCC has become an important criterion for rational development and utilization of regional water resources. This paper first briefly reviews the development process of WRCC. It then evaluates and contrasts the representative research methods of conventional trend(CT),system dynamics(SD),multi-objective model analysis(MOMA),comprehensive evaluation(CE),and dynamic simulation recursive(DSR). The results show that although there are various methods of WRCC,the major methods used have become out-of-date and stagnant,and new more sophisticated methods and technologies are lacking. Specifically,our analysis found that the index system,scientific robustness and comprehensiveness of evaluation criteria of current research methods are insufficient and need to be improved. In addition,the dynamic research of WRCC should receive more attention,and it requires further study to make it more applicable to real-world uses. Finally,a set of monitoring and early warning systems should be established and applied in demonstration areas to meet the urgent needs of water resource management in the new era.展开更多
The karst mountainous area is an ecologically fragile region with prominent humanland contradictions.The resource-environment carrying capacity(RECC)of this region needs to be further clarified.The development of remo...The karst mountainous area is an ecologically fragile region with prominent humanland contradictions.The resource-environment carrying capacity(RECC)of this region needs to be further clarified.The development of remote sensing(RS)and geographic information system(GIS)provides data sources and processing platform for RECC monitoring.This study analyzed and established the evaluation index system of RECC by considering particularity in the karst mountainous area of Southwest China;processed multisource RS data(Sentinel-2,Aster-DEM and Landsat-8)to extract the spatial distributions of nine key indexes by GIS techniques(information classification,overlay analysis and raster calculation);proposed the methods of index integration and fuzzy comprehensive evaluation of the RECC by GIS;and took a typical area,Guangnan County in Yunnan Province of China,as an experimental area to explore the effectiveness of the indexes and methods.The results showed that:(1)The important indexes affecting the RECC of karst mountainous area are water resources,tourism resources,position resources,geographical environment and soil erosion environment.(2)Data on cultivated land,construction land,minerals,transportation,water conservancy,ecosystem services,topography,soil erosion and rocky desertification can be obtained from RS data.GIS techniques integrate the information into the RECC results.The data extraction and processing methods are feasible on evaluating RECC.(3)The RECC of Guangnan County was in the mid-carrying level in 2018.The midcarrying and low-carrying levels were the main types,accounting for more than 80.00%of the total study area.The areas with high carrying capacity were mainly distributed in the northern regions of the northwest-southeast line of the county,and other areas have a low carrying capacity comparatively.The coordination between regional resource-environment status and socioeconomic development is the key to improve RECC.This study explores the evaluation index system of RECC in karst mountainous area and the展开更多
基金Under the auspices of Science and Technology Service Network Initiative of the Chinese Academy of Sciences(No.KEJ-EW-ZY-004)
文摘Resources and environment carrying capacity is central to not only regional sustainable development but also major function-oriented zoning. This paper presents an evaluation index system for resources and environment carrying capacity based on four aspects of carrying capacity(i.e., water resources, land resources, the environment, and ecosystems) by using a square deviation decision-making method, and on the basis of above effort evaluates the resources and environment carrying capacity across 31 provincial regions in China(not including Hong Kong, Macao and Taiwan regions of China). In addition, this paper evaluates the current state of socio-economic development, and analyzes the spatial distribution of resources and environment pressure. The results showed that distinct spatial differences in resources and environment carrying capacity and pressure across provincial regions. Resources and environment pressure is affected by both comprehensive resources and environment carrying capacity and socio-economic development. Regions subjected to lower degrees of resources and environment pressure will be restricted by resources and environmental problems through future courses of development owing to excessively low carrying capacities. By contrast, regions with higher comprehensive resources and environment carrying capacity will be subjected to excessively high levels of resources and environment pressure because of rapid socio-economic development. Both of resources and environment carrying capacity and pressure must therefore be considered in the allocation of country-binding targets to provincial regions.
基金National Key Research and Development Program of China(2016YFC0503500)Tibet key Science&Technology Specific Projects(Z2016C01G01)National Nature Science Foundation of China(41471453,41430861)
文摘The study of water resources carrying capacity(WRCC),a major component of resources and environment carrying capacity(RECC),began relatively recently. However,WRCC has witnessed a rapid development in terms of concept,calculation methods,and empirical research in recent years. WRCC has become an important criterion for rational development and utilization of regional water resources. This paper first briefly reviews the development process of WRCC. It then evaluates and contrasts the representative research methods of conventional trend(CT),system dynamics(SD),multi-objective model analysis(MOMA),comprehensive evaluation(CE),and dynamic simulation recursive(DSR). The results show that although there are various methods of WRCC,the major methods used have become out-of-date and stagnant,and new more sophisticated methods and technologies are lacking. Specifically,our analysis found that the index system,scientific robustness and comprehensiveness of evaluation criteria of current research methods are insufficient and need to be improved. In addition,the dynamic research of WRCC should receive more attention,and it requires further study to make it more applicable to real-world uses. Finally,a set of monitoring and early warning systems should be established and applied in demonstration areas to meet the urgent needs of water resource management in the new era.
基金the support given by the government and official in Guangnan Countyfunded by[National Natural Science Foundation of China]grant number[41361020,40961031]+3 种基金[Joint Fund of Yunnan Provincial Science and Technology Department and Yunnan University]grant number[2018FY001(-017)][Project of Innovative Talents Cultivation for Graduate Students of Yunnan University]grant number[C176230200][Project of Internationalization and Cultural Inheritance and Innovation of Yunnan University]grant number[C176250202][Science Research Fund of Yunnan Provincial Education Department in 2020:Postgraduate]grant number[2020Y0030]。
文摘The karst mountainous area is an ecologically fragile region with prominent humanland contradictions.The resource-environment carrying capacity(RECC)of this region needs to be further clarified.The development of remote sensing(RS)and geographic information system(GIS)provides data sources and processing platform for RECC monitoring.This study analyzed and established the evaluation index system of RECC by considering particularity in the karst mountainous area of Southwest China;processed multisource RS data(Sentinel-2,Aster-DEM and Landsat-8)to extract the spatial distributions of nine key indexes by GIS techniques(information classification,overlay analysis and raster calculation);proposed the methods of index integration and fuzzy comprehensive evaluation of the RECC by GIS;and took a typical area,Guangnan County in Yunnan Province of China,as an experimental area to explore the effectiveness of the indexes and methods.The results showed that:(1)The important indexes affecting the RECC of karst mountainous area are water resources,tourism resources,position resources,geographical environment and soil erosion environment.(2)Data on cultivated land,construction land,minerals,transportation,water conservancy,ecosystem services,topography,soil erosion and rocky desertification can be obtained from RS data.GIS techniques integrate the information into the RECC results.The data extraction and processing methods are feasible on evaluating RECC.(3)The RECC of Guangnan County was in the mid-carrying level in 2018.The midcarrying and low-carrying levels were the main types,accounting for more than 80.00%of the total study area.The areas with high carrying capacity were mainly distributed in the northern regions of the northwest-southeast line of the county,and other areas have a low carrying capacity comparatively.The coordination between regional resource-environment status and socioeconomic development is the key to improve RECC.This study explores the evaluation index system of RECC in karst mountainous area and the