The concept of entransy has been newly proposed in terms of the analogy between heat and electrical conduction and could bc useful in analyzing and optimizing the heat-work conversion systems. This work presents compa...The concept of entransy has been newly proposed in terms of the analogy between heat and electrical conduction and could bc useful in analyzing and optimizing the heat-work conversion systems. This work presents comparative analyses of entransy and exergy for optimizations of heat-work conversion. The work production and heat transfer processes in Carnot cycle system are investigated with the formulations of exergy destruction, entransy loss, work entransy, entransy dissipation, and cfficiencics for both cases of dumping and non-dumping of used source fluid. The effects of source and condensation temperatures on the system performance arc systematically investigated for optimal condition of producing maximum work or work cntransy.展开更多
Entropy function is used to demonstrate the Carnot efficiency, even if it is not always easy to understand its bases: the reversible movement or the reversible heat transfer. Here, it is proposed to demonstrate the Ca...Entropy function is used to demonstrate the Carnot efficiency, even if it is not always easy to understand its bases: the reversible movement or the reversible heat transfer. Here, it is proposed to demonstrate the Carnot efficiency “without” using the Entropy function. For this, it is necessary to enhance two concepts: heat transfer based on the source temperature and work transfer based on external pressure. This is achieved through 1) a balance exchanged heat, based on the source temperature and the system temperature, and 2) a balance exchanged work, based on the external pressure and the internal pressure. With these enhanced concepts, Laplace function and Carnot efficiency can be demonstrated without using the Entropy function (S). This is only a new formalism. Usual thermodynamics results are not changed. This new formalism can help to get a better description of realistic phenomena, like the efficiency of a realistic cycle.展开更多
The traditional thermodynamic theory explains the reversible phenomena quite well, except that reversible phenomena are rare or even impossible in practice. Here the purpose is to propose an explanation valid for reve...The traditional thermodynamic theory explains the reversible phenomena quite well, except that reversible phenomena are rare or even impossible in practice. Here the purpose is to propose an explanation valid for reversible and also irreversible phenomena, irreversibility being common or realistic. It previously exposed points tricky to grasp, as the sign of the work exchange, the adiabatic expansion in vacuum (free expansion) or the transfer of heat between two bodies at the same temperature (isothermal transfer). After having slightly modified the concepts of heat transfer (each body produces heat according to its own temperature) and work (distinguishing external pressure from internal pressure), the previous points are more easily explained. At last, an engine efficiency in case of irreversible transfer is proposed. This paper is focused on the form of thermodynamics, on “explanations”;it does not question on “results” (except the irreversible free expansion of 1845...) which remain unchanged.展开更多
The present paper describes the energy analysis of a regenerative vapour power system. The regenerative steam turbines based on the Rankine cycle and comprised of vapour extractions have been used industrially since t...The present paper describes the energy analysis of a regenerative vapour power system. The regenerative steam turbines based on the Rankine cycle and comprised of vapour extractions have been used industrially since the beginning of the 20th century, particularly regarding the processes of electrical production. After having performed worked in the first stages of the turbine, part of the vapour is directed toward a regenerative exchanger and heats feedwater coming from the condenser. This process is known as regeneration, and the heat exchanger where the heat is transferred from steam is called a regenerator (or a feedwater heater). The profit in the output brought by regenerative rakings is primarily enabled by the lack of exchange of the tapped vapour reheating water with the low-temperature reservoir. The economic optimum is often fixed at seven extractions. One knows the Carnot relation, which is the best possible theoretical yield of a dual-temperature cycle;in a Carnot cycle, one makes the assumption that both compressions and expansions are isentropic. This article studies an ideal theoretical machine comprised of vapour extractions in which each cycle partial of tapped vapour obeys these same compressions and isentropic expansions.展开更多
基金supported by the Research Fund,Kumoh National Institute of Technology
文摘The concept of entransy has been newly proposed in terms of the analogy between heat and electrical conduction and could bc useful in analyzing and optimizing the heat-work conversion systems. This work presents comparative analyses of entransy and exergy for optimizations of heat-work conversion. The work production and heat transfer processes in Carnot cycle system are investigated with the formulations of exergy destruction, entransy loss, work entransy, entransy dissipation, and cfficiencics for both cases of dumping and non-dumping of used source fluid. The effects of source and condensation temperatures on the system performance arc systematically investigated for optimal condition of producing maximum work or work cntransy.
文摘Entropy function is used to demonstrate the Carnot efficiency, even if it is not always easy to understand its bases: the reversible movement or the reversible heat transfer. Here, it is proposed to demonstrate the Carnot efficiency “without” using the Entropy function. For this, it is necessary to enhance two concepts: heat transfer based on the source temperature and work transfer based on external pressure. This is achieved through 1) a balance exchanged heat, based on the source temperature and the system temperature, and 2) a balance exchanged work, based on the external pressure and the internal pressure. With these enhanced concepts, Laplace function and Carnot efficiency can be demonstrated without using the Entropy function (S). This is only a new formalism. Usual thermodynamics results are not changed. This new formalism can help to get a better description of realistic phenomena, like the efficiency of a realistic cycle.
文摘The traditional thermodynamic theory explains the reversible phenomena quite well, except that reversible phenomena are rare or even impossible in practice. Here the purpose is to propose an explanation valid for reversible and also irreversible phenomena, irreversibility being common or realistic. It previously exposed points tricky to grasp, as the sign of the work exchange, the adiabatic expansion in vacuum (free expansion) or the transfer of heat between two bodies at the same temperature (isothermal transfer). After having slightly modified the concepts of heat transfer (each body produces heat according to its own temperature) and work (distinguishing external pressure from internal pressure), the previous points are more easily explained. At last, an engine efficiency in case of irreversible transfer is proposed. This paper is focused on the form of thermodynamics, on “explanations”;it does not question on “results” (except the irreversible free expansion of 1845...) which remain unchanged.
文摘The present paper describes the energy analysis of a regenerative vapour power system. The regenerative steam turbines based on the Rankine cycle and comprised of vapour extractions have been used industrially since the beginning of the 20th century, particularly regarding the processes of electrical production. After having performed worked in the first stages of the turbine, part of the vapour is directed toward a regenerative exchanger and heats feedwater coming from the condenser. This process is known as regeneration, and the heat exchanger where the heat is transferred from steam is called a regenerator (or a feedwater heater). The profit in the output brought by regenerative rakings is primarily enabled by the lack of exchange of the tapped vapour reheating water with the low-temperature reservoir. The economic optimum is often fixed at seven extractions. One knows the Carnot relation, which is the best possible theoretical yield of a dual-temperature cycle;in a Carnot cycle, one makes the assumption that both compressions and expansions are isentropic. This article studies an ideal theoretical machine comprised of vapour extractions in which each cycle partial of tapped vapour obeys these same compressions and isentropic expansions.