A new technique for the synthesis of carbon nanotubes from coal is introduced in this paper. In this process, coal is selected as the raw material to injected into plasma jet directly, nanotubes are formed on the reac...A new technique for the synthesis of carbon nanotubes from coal is introduced in this paper. In this process, coal is selected as the raw material to injected into plasma jet directly, nanotubes are formed on the reactor wall. The metal elements contained in parent coal such as Cu, Al act as the catalyst. This technique is different from the traditional arc discharge process and has the advantages of easy and steady operation and low cost of raw material, so it is an attractive process.展开更多
An approach was presented for synthesis of semiconducting single-walled carbon nanotubes(SWNTs) by sulfur(S) doping with the method of graphite arc discharge. Raman spectroscopy, UV-vis-NIR absorption spectroscopy and...An approach was presented for synthesis of semiconducting single-walled carbon nanotubes(SWNTs) by sulfur(S) doping with the method of graphite arc discharge. Raman spectroscopy, UV-vis-NIR absorption spectroscopy and electronic properties measurements indicated the semconducting properties of the SWNTs samples. Simulant calculation indicated that S doping could induce convertion of metallic SWNTs into semiconducting ones. This strategy may pave a way for the direct synthesis of pure semiconducting SWNTs.展开更多
Well aligned quasi-straight single-walled carbon nanotubes (SWCNTs) and straight SWCNTs bundle have been prepared in large scale by anode-arc vaporization of gr aphite with metallic catalysts. Various parameters such ...Well aligned quasi-straight single-walled carbon nanotubes (SWCNTs) and straight SWCNTs bundle have been prepared in large scale by anode-arc vaporization of gr aphite with metallic catalysts. Various parameters such as the catalyst preparat ion, the kinds and pressure of the buffer gases, the quantity of anode-arc curre nt intensity, and the method of purification have been examined. The influence o f these parameters on the deposited carbon yield is reported, together with obse rvations of the produced material. Improvement in synthetic techniques has resul ted in the optimal conditions for the production of large quantities of high qua lity SWCNTs in our semi-continuous synthesis method. The formation of carbon nan otubes (CNTs) was studied briefly in this paper. Owing to the magnetic pinching effect of arc current, the CNTs arrange in parallel lines along the arc current direction.展开更多
Owing to the unique structure, the superior physical and chemical properties, the super strong mechanical performances, and so on, carbon nanotubes have attracted the attention of researchers all over the world. In th...Owing to the unique structure, the superior physical and chemical properties, the super strong mechanical performances, and so on, carbon nanotubes have attracted the attention of researchers all over the world. In this article, the basic properties and the main production processes of carbon nanotubes are introduced in brief, and the progress of applied research for carbon nanotubes is reviewed.展开更多
Arc in vacuum is one of the important methods used to prepare carbon materials. However, the use of vacuum increases the cost of the arc method. This paper introduces an arc discharge device working at atmospheric pre...Arc in vacuum is one of the important methods used to prepare carbon materials. However, the use of vacuum increases the cost of the arc method. This paper introduces an arc discharge device working at atmospheric pressure. The current-limiting resistor, capacitor and inductor make the discharge gentle. The electrode temperature can be adjusted from 2040 K to 3673 K. Carbon nanofibres were prepared at the electrode temperature of 3645 K by using this device.展开更多
A deep understanding of the physical processes coming along with the current interruption in high voltage circuit breakers is essential for the optimization of today’s switching technologies.Therefore a switching arc...A deep understanding of the physical processes coming along with the current interruption in high voltage circuit breakers is essential for the optimization of today’s switching technologies.Therefore a switching arc in a model circuit breaker is studied by means of computational fluid dynamics(CFD)simulations and optical emission spectroscopy(OES)in this contribution.Experimental investigations are performed in carbon dioxide(CO2)at absolute filling pressures of 0.1 and 0.5 MPa.CFD simulations are carried out based on a model of the arcing zone including a consistent treatment of the radiation transport and the wall ablation.Carbon ion line radiation is analysed in the experiment using an optical path in the heating channel between the electrodes inside the nozzle system.The pressure value in the arc is estimated based on the line width-intensity dependence.Obtained values correspond to the measured pressure outside the arc.For the temperature profiles,a good agreement within the accuracy of the approaches is observed between the CFD simulations and the results of OES.展开更多
In spite of the current prevalence of the CVD-based processes, the electric arc remains an interesting process for the synthesis of carbon nanoforms, thanks to its versatility, robustness and easiness. It also allows ...In spite of the current prevalence of the CVD-based processes, the electric arc remains an interesting process for the synthesis of carbon nanoforms, thanks to its versatility, robustness and easiness. It also allows performing in-situ substitution of carbon atoms by hetero-elements in the graphene lattice. Our work aims to establish a correlation between the plasma properties, type and chemical composition (and the substitution rate) of the obtained single-wall carbon nan- otubes. The plasma was characterized by optical emission spectroscopy and the products were analyzed by high resolution transmission electron microscopy and core level Electron Energy-Loss Spectroscopy (EELS). Results show that a high boron content leads to a plasma temperature decrease and hinders the formation of nanotubes. This effect can be compensated by increasing the arc current and/or yttrium content. The optimal conditions for the synthesis of boron- and/or nitrogen-substituted nanotubes correspond to a high axial plasma temperature associated to a strong radial gradient. EELS analysis confirmed that the boron incorporates into the graphenic lattice.展开更多
Electrode ENiFe-C1 and E4303 were selected to join the cemented carbide WC-20Co and carbon steel 45 by shielded metal arc welding process. Microstructure and bending property of the corresponding joints were analyzed....Electrode ENiFe-C1 and E4303 were selected to join the cemented carbide WC-20Co and carbon steel 45 by shielded metal arc welding process. Microstructure and bending property of the corresponding joints were analyzed. The results showed that the carbon steel electrode E4303 had no proper metallurgy condition for the arc welding of cemented carbide and carbon steel. The C and Ni content of the cast iron electrode ENiFe-C1 could meet the condition of preventing the formation ofη carbide,which was suit to the arc welding of cemented carbide and carbon steel,but the operation parameters needed to be optimized to minimize the slag inclusion. The alloy WC-20Co which did not fit for cold arc welding,by adopting the measure of being preheated at 723 K for 1 h before welding,and being kept at 723 K for 3 h after welding then followed furnace cooling could avoid the happening of crack in the WC-20Co base metal.展开更多
文摘A new technique for the synthesis of carbon nanotubes from coal is introduced in this paper. In this process, coal is selected as the raw material to injected into plasma jet directly, nanotubes are formed on the reactor wall. The metal elements contained in parent coal such as Cu, Al act as the catalyst. This technique is different from the traditional arc discharge process and has the advantages of easy and steady operation and low cost of raw material, so it is an attractive process.
基金supported by National Natural Science Foundation of China No.50730008Shanghai Science and Technology Grant No.0752nm015National Basic Research Program of China No.2006CB300406
文摘An approach was presented for synthesis of semiconducting single-walled carbon nanotubes(SWNTs) by sulfur(S) doping with the method of graphite arc discharge. Raman spectroscopy, UV-vis-NIR absorption spectroscopy and electronic properties measurements indicated the semconducting properties of the SWNTs samples. Simulant calculation indicated that S doping could induce convertion of metallic SWNTs into semiconducting ones. This strategy may pave a way for the direct synthesis of pure semiconducting SWNTs.
基金This work was supported by Natural Science Foundation of Gansu provincethe Tackle Key Problems Foundation of Gansu pronince,China.
文摘Well aligned quasi-straight single-walled carbon nanotubes (SWCNTs) and straight SWCNTs bundle have been prepared in large scale by anode-arc vaporization of gr aphite with metallic catalysts. Various parameters such as the catalyst preparat ion, the kinds and pressure of the buffer gases, the quantity of anode-arc curre nt intensity, and the method of purification have been examined. The influence o f these parameters on the deposited carbon yield is reported, together with obse rvations of the produced material. Improvement in synthetic techniques has resul ted in the optimal conditions for the production of large quantities of high qua lity SWCNTs in our semi-continuous synthesis method. The formation of carbon nan otubes (CNTs) was studied briefly in this paper. Owing to the magnetic pinching effect of arc current, the CNTs arrange in parallel lines along the arc current direction.
文摘Owing to the unique structure, the superior physical and chemical properties, the super strong mechanical performances, and so on, carbon nanotubes have attracted the attention of researchers all over the world. In this article, the basic properties and the main production processes of carbon nanotubes are introduced in brief, and the progress of applied research for carbon nanotubes is reviewed.
文摘Arc in vacuum is one of the important methods used to prepare carbon materials. However, the use of vacuum increases the cost of the arc method. This paper introduces an arc discharge device working at atmospheric pressure. The current-limiting resistor, capacitor and inductor make the discharge gentle. The electrode temperature can be adjusted from 2040 K to 3673 K. Carbon nanofibres were prepared at the electrode temperature of 3645 K by using this device.
文摘A deep understanding of the physical processes coming along with the current interruption in high voltage circuit breakers is essential for the optimization of today’s switching technologies.Therefore a switching arc in a model circuit breaker is studied by means of computational fluid dynamics(CFD)simulations and optical emission spectroscopy(OES)in this contribution.Experimental investigations are performed in carbon dioxide(CO2)at absolute filling pressures of 0.1 and 0.5 MPa.CFD simulations are carried out based on a model of the arcing zone including a consistent treatment of the radiation transport and the wall ablation.Carbon ion line radiation is analysed in the experiment using an optical path in the heating channel between the electrodes inside the nozzle system.The pressure value in the arc is estimated based on the line width-intensity dependence.Obtained values correspond to the measured pressure outside the arc.For the temperature profiles,a good agreement within the accuracy of the approaches is observed between the CFD simulations and the results of OES.
文摘In spite of the current prevalence of the CVD-based processes, the electric arc remains an interesting process for the synthesis of carbon nanoforms, thanks to its versatility, robustness and easiness. It also allows performing in-situ substitution of carbon atoms by hetero-elements in the graphene lattice. Our work aims to establish a correlation between the plasma properties, type and chemical composition (and the substitution rate) of the obtained single-wall carbon nan- otubes. The plasma was characterized by optical emission spectroscopy and the products were analyzed by high resolution transmission electron microscopy and core level Electron Energy-Loss Spectroscopy (EELS). Results show that a high boron content leads to a plasma temperature decrease and hinders the formation of nanotubes. This effect can be compensated by increasing the arc current and/or yttrium content. The optimal conditions for the synthesis of boron- and/or nitrogen-substituted nanotubes correspond to a high axial plasma temperature associated to a strong radial gradient. EELS analysis confirmed that the boron incorporates into the graphenic lattice.
基金supported by the Natural Science Foundation of Liaoning Provence(Grant No.2014028023)
文摘Electrode ENiFe-C1 and E4303 were selected to join the cemented carbide WC-20Co and carbon steel 45 by shielded metal arc welding process. Microstructure and bending property of the corresponding joints were analyzed. The results showed that the carbon steel electrode E4303 had no proper metallurgy condition for the arc welding of cemented carbide and carbon steel. The C and Ni content of the cast iron electrode ENiFe-C1 could meet the condition of preventing the formation ofη carbide,which was suit to the arc welding of cemented carbide and carbon steel,but the operation parameters needed to be optimized to minimize the slag inclusion. The alloy WC-20Co which did not fit for cold arc welding,by adopting the measure of being preheated at 723 K for 1 h before welding,and being kept at 723 K for 3 h after welding then followed furnace cooling could avoid the happening of crack in the WC-20Co base metal.