We introduce certain Calderón-Zygmund-type operators and discuss their boundedness on spaces such as weighted Lebesgue spaces,weighted weak Lebesgue spaces,weighted Hardy spaces and weighted weak Hardy spaces.The...We introduce certain Calderón-Zygmund-type operators and discuss their boundedness on spaces such as weighted Lebesgue spaces,weighted weak Lebesgue spaces,weighted Hardy spaces and weighted weak Hardy spaces.The sharpness of some results is also investigated.展开更多
In this paper, the boundedness of Toeplitz operator Tb(f) related to strongly singular Calderon-Zygmund operators and Lipschitz function b∈Λβ0(Rn) is discussed from Lp(Rn) to Lq(Rn), 1/q=1/p-β0/n, and from Lp(Rn) ...In this paper, the boundedness of Toeplitz operator Tb(f) related to strongly singular Calderon-Zygmund operators and Lipschitz function b∈Λβ0(Rn) is discussed from Lp(Rn) to Lq(Rn), 1/q=1/p-β0/n, and from Lp(Rn) to Triebel-Lizorkin space Fβ0,∞p. We also obtain the boundedness of generalized Toeplitz operatorθbα0 from LP(Rn) to Lq(Rn), 1/q =1/p-α0+β0/n. All the above results include the corresponding boundedness of commutators. Moreover, the boundedness of Toeplitz operator Tb(f) related to strongly singular Calderon-Zygmund operators and BMO function b is discussed on LP(Rn), 1 < p <∞.展开更多
Let X be a ball quasi-Banach function space on R^(n).In this article,we introduce the weak Hardytype space WH_(X)(R^(n)),associated with X,via the radial maximal function.Assuming that the powered HardyLittlewood maxi...Let X be a ball quasi-Banach function space on R^(n).In this article,we introduce the weak Hardytype space WH_(X)(R^(n)),associated with X,via the radial maximal function.Assuming that the powered HardyLittlewood maximal operator satisfies some Fefferman-Stein vector-valued maximal inequality on X as well as it is bounded on both the weak ball quasi-Banach function space WX and the associated space,we then establish several real-variable characterizations of WH_(X)(R^(n)),respectively,in terms of various maximal functions,atoms and molecules.As an application,we obtain the boundedness of Calderón-Zygmund operators from the Hardy space H_(X)(R^(n))to WH_(X)(Rn),which includes the critical case.All these results are of wide applications.Particularly,when X:=M^(q)_(p)(R^(n))(the Morrey space),X:=L^(p)(R^(n))(the mixed-norm Lebesgue space)and X:=(EΦq)t(Rn)(the Orlicz-slice space),which are all ball quasi-Banach function spaces rather than quasiBanach function spaces,all these results are even new.Due to the generality,more applications of these results are predictable.展开更多
Our aim in this paper is to prove the boundedness of commutators of Calderón-Zygmund operator with the Lipschitz function or BOM function on Herz-type Hardy space with variable exponent.
Let k ∈ N.We prove that the lnultilinear operators of finite sums of products of singular integrals on R<sup>n</sup> are bounded from H K<sub>ql</sub><sup>αl·pl</sup>(R<s...Let k ∈ N.We prove that the lnultilinear operators of finite sums of products of singular integrals on R<sup>n</sup> are bounded from H K<sub>ql</sub><sup>αl·pl</sup>(R<sup>n</sup>)×…×HK<sub>qk</sub><sup>αk,pk</sup>(R<sup>n</sup>)into HK<sub>q</sub><sup>α,p</sup>(R<sup>n</sup>)if they have vanishing moments up to a certain order dictated by the target spaces.These conditions on vanishing moments satisfied by the multilinear operators are also necessary when α<sub>j</sub>(?)0 and the singular integrals considered here include the Calderón-Zygmund singular integrals and the fractional integrals of any orders.展开更多
By means of vector-valued product Calderón-Zygmund operators and some subtle estimates,the boundedness in product Hardy spaces on R^n × R^m of Calderón-Zygmund operators introduced by J.L. Journé i...By means of vector-valued product Calderón-Zygmund operators and some subtle estimates,the boundedness in product Hardy spaces on R^n × R^m of Calderón-Zygmund operators introduced by J.L. Journé is established.展开更多
In this paper, the authors establish the boundedness of commutators generated by strongly singular CalderSn-Zygmund operators and weighted BMO functions on weighted Herz-type Hardy spaces. Moreover, the corresponding ...In this paper, the authors establish the boundedness of commutators generated by strongly singular CalderSn-Zygmund operators and weighted BMO functions on weighted Herz-type Hardy spaces. Moreover, the corresponding results for commutators generated by strongly singular CalderSn- Zygmund operators and weighted Lipschitz functions can also be obtained.展开更多
In this paper, a class of anisotropic Herz-type Hardy spaces associated with a non-isotropic dilation on ℝ<SUP> n </SUP>are introduced, and the central atomic and molecular decomposition characte...In this paper, a class of anisotropic Herz-type Hardy spaces associated with a non-isotropic dilation on ℝ<SUP> n </SUP>are introduced, and the central atomic and molecular decomposition characterizations of those spaces are established. As some applications of the decomposition theory, the authors study the interpolation problem and the boundedness of the central δ-Calderón-Zygmund operators on the anisotropic Herz-type Hardy spaces.展开更多
In this paper,the authors obtain the boundedness of vector valued bilinear Calderón-Zygmund operators on products of weighted Herz-Morrey spaces with variable exponents.
基金Dachun Yang was partially supported by the NNSF and the SEDF of China
文摘We introduce certain Calderón-Zygmund-type operators and discuss their boundedness on spaces such as weighted Lebesgue spaces,weighted weak Lebesgue spaces,weighted Hardy spaces and weighted weak Hardy spaces.The sharpness of some results is also investigated.
基金The This work was supported by the National Natural Science Foundation of China(Grant No.10571014)the Doctoral Programme Foundation of Institution of Higher Education of China(Grant No.20040027001).
文摘In this paper, the boundedness of Toeplitz operator Tb(f) related to strongly singular Calderon-Zygmund operators and Lipschitz function b∈Λβ0(Rn) is discussed from Lp(Rn) to Lq(Rn), 1/q=1/p-β0/n, and from Lp(Rn) to Triebel-Lizorkin space Fβ0,∞p. We also obtain the boundedness of generalized Toeplitz operatorθbα0 from LP(Rn) to Lq(Rn), 1/q =1/p-α0+β0/n. All the above results include the corresponding boundedness of commutators. Moreover, the boundedness of Toeplitz operator Tb(f) related to strongly singular Calderon-Zygmund operators and BMO function b is discussed on LP(Rn), 1 < p <∞.
基金supported by National Natural Science Foundation of China(Grant Nos.11971058,11761131002,11671185 and 11871100)。
文摘Let X be a ball quasi-Banach function space on R^(n).In this article,we introduce the weak Hardytype space WH_(X)(R^(n)),associated with X,via the radial maximal function.Assuming that the powered HardyLittlewood maximal operator satisfies some Fefferman-Stein vector-valued maximal inequality on X as well as it is bounded on both the weak ball quasi-Banach function space WX and the associated space,we then establish several real-variable characterizations of WH_(X)(R^(n)),respectively,in terms of various maximal functions,atoms and molecules.As an application,we obtain the boundedness of Calderón-Zygmund operators from the Hardy space H_(X)(R^(n))to WH_(X)(Rn),which includes the critical case.All these results are of wide applications.Particularly,when X:=M^(q)_(p)(R^(n))(the Morrey space),X:=L^(p)(R^(n))(the mixed-norm Lebesgue space)and X:=(EΦq)t(Rn)(the Orlicz-slice space),which are all ball quasi-Banach function spaces rather than quasiBanach function spaces,all these results are even new.Due to the generality,more applications of these results are predictable.
文摘Our aim in this paper is to prove the boundedness of commutators of Calderón-Zygmund operator with the Lipschitz function or BOM function on Herz-type Hardy space with variable exponent.
基金The second author is partially supported by the NNSF and the SEDF of Chinathe Grant-in-Aid for Scientific Research (11304009),Japan Society for the Promotion of Science
文摘Let k ∈ N.We prove that the lnultilinear operators of finite sums of products of singular integrals on R<sup>n</sup> are bounded from H K<sub>ql</sub><sup>αl·pl</sup>(R<sup>n</sup>)×…×HK<sub>qk</sub><sup>αk,pk</sup>(R<sup>n</sup>)into HK<sub>q</sub><sup>α,p</sup>(R<sup>n</sup>)if they have vanishing moments up to a certain order dictated by the target spaces.These conditions on vanishing moments satisfied by the multilinear operators are also necessary when α<sub>j</sub>(?)0 and the singular integrals considered here include the Calderón-Zygmund singular integrals and the fractional integrals of any orders.
基金supported by the National Natural Science Foundation of China(10871025)
文摘By means of vector-valued product Calderón-Zygmund operators and some subtle estimates,the boundedness in product Hardy spaces on R^n × R^m of Calderón-Zygmund operators introduced by J.L. Journé is established.
基金Supported by National Natural Science Foundation of China(Grant No.11171345)the Fundamental Research Funds for the Central Universities(Grant No.2009QS16)the State Scholarship Fund of China
文摘In this paper, the authors establish the boundedness of commutators generated by strongly singular CalderSn-Zygmund operators and weighted BMO functions on weighted Herz-type Hardy spaces. Moreover, the corresponding results for commutators generated by strongly singular CalderSn- Zygmund operators and weighted Lipschitz functions can also be obtained.
基金NSF of China (Grant Nos.10571014 and 10571015)SRFDP of China (Grant No.20050027025)
文摘In this paper, a class of anisotropic Herz-type Hardy spaces associated with a non-isotropic dilation on ℝ<SUP> n </SUP>are introduced, and the central atomic and molecular decomposition characterizations of those spaces are established. As some applications of the decomposition theory, the authors study the interpolation problem and the boundedness of the central δ-Calderón-Zygmund operators on the anisotropic Herz-type Hardy spaces.
基金supported by the National Natural Science Foundation of China(Nos.11761026)Guangxi Natural Science Foundation(No.2020GXNSFAA159085)。
文摘In this paper,the authors obtain the boundedness of vector valued bilinear Calderón-Zygmund operators on products of weighted Herz-Morrey spaces with variable exponents.