This study describes a new effective adsorbent for cadmium removal from aqueous solution synthesized by coating a shellac layer, a natural biodegradable and renewable resin with abundant hydroxyl and carboxylic groups...This study describes a new effective adsorbent for cadmium removal from aqueous solution synthesized by coating a shellac layer, a natural biodegradable and renewable resin with abundant hydroxyl and carboxylic groups, on the surface of iron oxide magnetic nanoparticles. Transmission Electron Microscopy (TEM) imaging showed shellac-coated magnetic nanoparticle (SCMN) adsorbents had a core-shell structure with a core of 20 nm and shell of 5 nm. Fourier Transform Infrared Spectroscopic analysis suggested the occurrence of reaction between carboxyl groups on the SCMN adsorbent surface and cadmium ions in aqueous solution. Kinetic data were well described by pseudo second-order model and adsorption isotherms were fitted with both Langmuir and Freundlich models with maximum adsorption capacity of 18.80 mg]g. SCMN adsorbents provided a favorable adsorption capacity under high salinity conditions, and cadmium could easily be desorbed using mild organic acid solutions at low concentration.展开更多
An electrochemical sensor based on self-made nano-porous pseudo carbon paste electrode(nano-PPCPE)has been successfully developed,and used to detect Cd^2+ and Pb^2+.The experimental results showed that the electrochem...An electrochemical sensor based on self-made nano-porous pseudo carbon paste electrode(nano-PPCPE)has been successfully developed,and used to detect Cd^2+ and Pb^2+.The experimental results showed that the electrochemical performance of nanoPPCPE is evidently better than both glassy carbon electrode(GCE)and pure carbon paste electrode(CPE).Then the prepared nano-PPCPE was applied to detect Cd^2+ and Pb^2+in standard solution,the results showed that the electrodes can quantitatively detect trace Cd^2+ and Pb^2+,which has great significance in electrochemical analysis and detection.The linear ranges between the target ions concentration and the D PASV current were from 0.1-3.0 μmol/L,0.05-4.0 μmol/L for Cd^2+ and Pb^2+,respectively.And the detection limits were 0.0780 μmol/L and 0.0292 μmol/L,respectively.Moreover,the preparation of the nano-PPCPE is cheap,simple and has important practical value.展开更多
To separate cadmium ions from aqueous solution efficiently, micellar-enhanced ultrafiltration(MEUF) of hollow ultrafiltration membrane was used, with sodium dodecyl benzene sulfonate (SDBS) and sodium dodecyl (sulfate...To separate cadmium ions from aqueous solution efficiently, micellar-enhanced ultrafiltration(MEUF) of hollow ultrafiltration membrane was used, with sodium dodecyl benzene sulfonate (SDBS) and sodium dodecyl (sulfate) (SDS) as surfactants. The important parameters affecting the rejection of cadmium, the permeate flux and the secondary resistance were investigated, including surfactant species, surfactant concentration, operating time, trans-membrane pressure, the addition of electrolyte and solution pH. The results show that the rejection rate of cadmium reaches 97.8%. Trans-membrane pressure and the addition of electrolyte (NaCl) are less influential while surfactant species, surfactant concentration and pH value are important for micellar-enhanced ultrafiltration. The optimum concentration of surfactant is the critical micelle concentration, and SDBS is better than SDS. (Micellar-)(enhanced) ultrafiltration with SDBS can separate cadmium ions from aqueous solution efficiently.展开更多
基金supported by the National Natural Science Foundation of China (No. 50808070, 51039001)the Program for New Century Excellent Talents in University from the Ministry of Education of China (No. NCET-09-0328)+4 种基金the Postdoctoral Science Foundation of China (No.20070410301, 200902468)the Program for Changjiang Scholars and Innovative Research Team in University(No. IRT0719)the Hunan Provincial Natural Science Foundation of China (No. 08JJ4006, 10JJ7005)the Xiangjiang Water Environmental Pollution Control Project subjected to the National Key Science and Technology Project for Water Environmental Pollution Control (No.2009ZX07212-001-02, 2009ZX07212-001-06)the Hunan Key Scientific Research Project (No. 2009FJ1010)
文摘This study describes a new effective adsorbent for cadmium removal from aqueous solution synthesized by coating a shellac layer, a natural biodegradable and renewable resin with abundant hydroxyl and carboxylic groups, on the surface of iron oxide magnetic nanoparticles. Transmission Electron Microscopy (TEM) imaging showed shellac-coated magnetic nanoparticle (SCMN) adsorbents had a core-shell structure with a core of 20 nm and shell of 5 nm. Fourier Transform Infrared Spectroscopic analysis suggested the occurrence of reaction between carboxyl groups on the SCMN adsorbent surface and cadmium ions in aqueous solution. Kinetic data were well described by pseudo second-order model and adsorption isotherms were fitted with both Langmuir and Freundlich models with maximum adsorption capacity of 18.80 mg]g. SCMN adsorbents provided a favorable adsorption capacity under high salinity conditions, and cadmium could easily be desorbed using mild organic acid solutions at low concentration.
基金the National Key Research and Development Program of China (No.2018YFC1602905)the National Natural Science Foundation of China (Nos.61871180 and 61527806)+1 种基金the Natural Science Foundation of Hunan Province (No.2017JJ2069)Hunan Key Research Project (No.2017SK2174) for the financial supports
文摘An electrochemical sensor based on self-made nano-porous pseudo carbon paste electrode(nano-PPCPE)has been successfully developed,and used to detect Cd^2+ and Pb^2+.The experimental results showed that the electrochemical performance of nanoPPCPE is evidently better than both glassy carbon electrode(GCE)and pure carbon paste electrode(CPE).Then the prepared nano-PPCPE was applied to detect Cd^2+ and Pb^2+in standard solution,the results showed that the electrodes can quantitatively detect trace Cd^2+ and Pb^2+,which has great significance in electrochemical analysis and detection.The linear ranges between the target ions concentration and the D PASV current were from 0.1-3.0 μmol/L,0.05-4.0 μmol/L for Cd^2+ and Pb^2+,respectively.And the detection limits were 0.0780 μmol/L and 0.0292 μmol/L,respectively.Moreover,the preparation of the nano-PPCPE is cheap,simple and has important practical value.
基金Project (50225926) supported by the National Foundation for Distinguished Young Scholars Project (20020532017)supported by the Doctoral Foundation of Ministry of Education of China Project (2003AA644010) supported by the National High techResear
文摘To separate cadmium ions from aqueous solution efficiently, micellar-enhanced ultrafiltration(MEUF) of hollow ultrafiltration membrane was used, with sodium dodecyl benzene sulfonate (SDBS) and sodium dodecyl (sulfate) (SDS) as surfactants. The important parameters affecting the rejection of cadmium, the permeate flux and the secondary resistance were investigated, including surfactant species, surfactant concentration, operating time, trans-membrane pressure, the addition of electrolyte and solution pH. The results show that the rejection rate of cadmium reaches 97.8%. Trans-membrane pressure and the addition of electrolyte (NaCl) are less influential while surfactant species, surfactant concentration and pH value are important for micellar-enhanced ultrafiltration. The optimum concentration of surfactant is the critical micelle concentration, and SDBS is better than SDS. (Micellar-)(enhanced) ultrafiltration with SDBS can separate cadmium ions from aqueous solution efficiently.