AIM: To investigate the effect and mechanism of blockade of the CXC chemokine receptor-4 (CXCR4) signaling pathway by AMD3100, a small non-peptide CXCR4 inhibitor, on invasion and metastasis of colorectal cancer cells...AIM: To investigate the effect and mechanism of blockade of the CXC chemokine receptor-4 (CXCR4) signaling pathway by AMD3100, a small non-peptide CXCR4 inhibitor, on invasion and metastasis of colorectal cancer cells in vitro. METHODS: Human colorectal cancer cell line SW480 was treated with AMD3100 at different final concentrations. 3-(4,5-dimethylthiazole-2-yl)-2.5-dipheny-ltetrazolium bromide (MTT) assay was used to detect the effect of AMD3100 on cell proliferation. The invasion ability of SW480 cells was determined by cell invasion assay kit. In the presence of AMD3100, the CXCL12-mediated migratory response of SW480 cells was tested by classical chemotaxis assays. RT-PCR analysis and Western blotting were used to detect the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in SW480 cells. RESULTS: Cell viability was significantly suppressed by AMD3100 in a dose-dependent manner. AMD3100 (100 and 1000 ng/mL) significantly inhibited the invasion ability of SW480 cells. Treatment with AMD3100 markedly reduced the expression of VEGF and MMP-9 but not MMP-2 in SW480 cells. CONCLUSION: The CXCL12/CXCR4 system is an important mediator of proliferation and invasion of CXCR4-expressing colorectal cancer cells. AMD3100 inhibited invasion and metastasis activity of the colorectalcancer cell line SW480 through down-regulation of VEGF and MMP-9 expression.展开更多
The CXC chemokine CXCL12 is an important factor in physiological and pathological processes, includingembryogenesis, hematopoiesis, angiogenesis and inflammation, because it activates and/or induces migration ofhemato...The CXC chemokine CXCL12 is an important factor in physiological and pathological processes, includingembryogenesis, hematopoiesis, angiogenesis and inflammation, because it activates and/or induces migration ofhematopoietic progenitor and stem cells, endothelial cells and most leukocytes. Therefore, CXCL12 activity istightly regulated at multiple levels. CXCL12 has the unique property of existing in six splice variants in humans,each having a specific tissue distribution and in vivo activity. Controlled splice variant transcription and mRNAstability determine the CXCL12 expression profile. CXCL12 fulfills its functions in homeostatic and pathologicalconditions by interacting with its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3(ACKR3) and by binding to glycosaminoglycans (GAGs) in tissues and on the endothelium to allow a properpresentation to passing leukocytes. Homodimerizaton and heterodimerization of CXCL12 and its receptors can altertheir signaling activity, as exemplified by the synergy between CXCL12 and other chemokines in leukocyte migrationassays. Receptor binding may also initiate CXCL12 internalization and its subsequent removal from theenvironment. Furthermore, CXCL12 activity is regulated by posttranslational modifications. Proteolytic removal ofNH2- or COOH-terminal amino acids, citrullination of arginine residues by peptidyl arginine deiminases or nitrationof tyrosine residues reduce CXCL12 activity. This review summarizes the interactions of CXCL12 with the cellularenvironment and discusses the different levels of CXCL12 activity regulation.展开更多
Chemokines are involved in human hepatocellular carcinoma (HCC) carcinogenesis. However, the exact mechanism of chemokines in HCC carcinogenesis remains unknown. Here we investigated the roles of chemokine receptor...Chemokines are involved in human hepatocellular carcinoma (HCC) carcinogenesis. However, the exact mechanism of chemokines in HCC carcinogenesis remains unknown. Here we investigated the roles of chemokine receptor 4 (CXCR4) and chemokine ligand 12 (CXCL12) in the metastasis of HCC. We found that the expression levels of CXCR4 mRNA in HCC tissues, MHCC97 cells, and HUVEC cells were 2.52 ±1.13, 2.34 ±1.16 and 1.63 ±1.26, respectively and that the CXCR4 protein levels were 1.38 ± 0.13, 1.96± 0.32 and 1.86 ±0.21, respectively. In contrast, CXCR4 was not detected in normal hepatic tissues. In 78 HCC patients, we also found that the concentration of CXCL12 in cancerous ascitic fluid was 783-8,364 pg/ml and that CXCL12 mRNA level in HCC metastasis portal lymph nodes was 1.21 ± 0.87 but undetectable in normal hepatic tissues. Finally we discovered that recombinant human CXCL12 could induce MHCC97 cells and HUVEC cells to migrate with chemotactic indexes (CI) of 3.9 ±1.1 and 4.1± 1.6, respectively. Cancerous ascitic fluid could also induce the migration of MHCC97 cells with a CI of 1.9 ± 0.8. Thus, our data suggest that CXCR4 and CXCL12 may play an important role in the metastasis of HCC by promoting the migration of tumor cells.展开更多
AIM:To investigate the role of CXC chemokine receptor-4 (CXCR4) and stromal cell-derived factor-1 (SDF-1) in lymph node metastasis of gastric carcinoma.METHODS:In 40 cases of gastric cancer,expression of CXCR4 mRNA in...AIM:To investigate the role of CXC chemokine receptor-4 (CXCR4) and stromal cell-derived factor-1 (SDF-1) in lymph node metastasis of gastric carcinoma.METHODS:In 40 cases of gastric cancer,expression of CXCR4 mRNA in cancer and normal mucous membrane and SDF-1 mRNA in lymph nodes around the stomach was detected using quantitative polymerase chain reaction (PCR) (TaqMan) and immunohistochemistric assay.SGC-7901 and MGC80-3 cancer cells were used to investigate the effect of SDF-1 on cell proliferation and migration.RESULTS:Quantitative reverse transcription PCR and immunohistochemistry revealed that the expression level of CXCR4 in gastric cancer was significantly higher than that in normal mucous membrane (1.6244 ± 1.3801 vs 1.0715 ± 0.5243,P < 0.05).The expression level of CXCR4 mRNA in gastric cancer with lymph node metastasis was also significantly higher than that without lymph node metastasis (0.823 ± 0.551 vs 0.392 ± 0.338,P < 0.05).CXCR4 expression was significantly related to poorly differentiated,high tumor stage and lymph node metastasis.Significant differences in the expression level of SDF-1 mRNA were found between lymph nodes in metastatic gastric cancer and normal nodes (0.5432 ± 0.4907 vs 0.2640 ± 0.2601,P < 0.05).The positive expression of SDF-1 mRNA in lymph nodes of metastatic gastric cancer was consistent with the positive expression of CXCR4 mRNA in gastric cancer (r=0.776,P < 0.01).Additionally,human gastric cancer cell lines expressed CXCR4 and showed vigorous proliferation and migratory responses to SDF-1.AMD3100 (a specific CXCR4 antagonist) was also found to effectively reduce the migration of gastric cancer cells.CONCLUSION:The CXCR4/SDF-1 axis is involved in the lymph node metastasis of gastric cancer.CXCR4 is considered as a potential therapeutic target in the treatment of gastric cancer.展开更多
AIM: To evaluate the expression of C-X-C motif chemokine receptor 4 (CXCR4) and its signaling cascades, which were previously identified as a key factor for cancer cell progression and metastasis, in cholangiocarci...AIM: To evaluate the expression of C-X-C motif chemokine receptor 4 (CXCR4) and its signaling cascades, which were previously identified as a key factor for cancer cell progression and metastasis, in cholangiocarcinoma cell lines. METHODS: The expression of CXCR4 and its signaling cascades were determined in the cholangiocarcinoma cell lines (RMCCA1 and KKU100) by Western blotting. The invasion assays and the detection of actin polymerization were tested in these cholangiocarcinoma cells treated with CXC chemokine ligand -12 (CXCL12). RESULTS: Expression of CXCR4 was detected in both cholangiocarcinoma cell lines and activation of CXCR4 with CXCL12 triggered the signaling via the extracellular signal-regulated kinase-1/2 (ERK1/2) and phosphoinositide 3-kinase (PI3K) and induction of cholangiocarcinoma cell invasion, and displayed high levels of actin polymerization. Addition of CXCR4 inhibitor (AMD3100) abrogated CXCL12-induced phosphorylation of MEKI/2 and Akt in these cells. Moreover, treatment with MEK1/2 inhibitor (U0126) or PI3K inhibitor (LY294002) also attenuated the effect of CXCL12- induced cholangiocarcinoma cell invasion. CONCLUSION: These results indicated that the activation of CXCR4 and its signaling pathways (MEK1/2 and Akt) are essential for CXCL12-induced cholangiocarcinoma cell invasion. This rises Implications on a potential role for the inhibition of CXCR4 or its signal cascades in the treatment of cholangiocarcinoma.展开更多
目的总结93例华氏巨球蛋白血症(WM)患者的临床特征、MYD88L265P及CXCR4WHIM突变情况、治疗选择和生存预后。方法回顾性分析2000年1月至2016年8月在北京协和医院初诊的症状性WM患者的临床特征、国际预后指数评分(WPSS)和总体生存(O...目的总结93例华氏巨球蛋白血症(WM)患者的临床特征、MYD88L265P及CXCR4WHIM突变情况、治疗选择和生存预后。方法回顾性分析2000年1月至2016年8月在北京协和医院初诊的症状性WM患者的临床特征、国际预后指数评分(WPSS)和总体生存(OS);其中34例患者检测了MYD88L265P和CXCR4WHIM突变。结果93例患者男女比例为2.44∶1,中位年龄64(33~85)岁。WPSS分层:低危组16例(17.2%),中危组44例(47.3%),高危组33例(35.5%)。中位随访44(1~201)个月,中位OS期为84个月。Cox多因素分析显示:WPSS危险分层(HR=2.342,95% CI 1.111~4.950,P=0.025)、继发淀粉样变性(HR=5.538,95% CI 1.958~15.662,P=0.001)以及新药治疗(HR=3.392,95% CI 1.531~7.513,P=0.003)均是影响患者OS的独立预后因素。34例患者中32例(94.1%)存在MYD88L265P突变,8例(23.5%)存在CXCR4WHIM突变。MYD88 L265PCXCR4WHIM突变组(7例)较MYD88 L265PCXCR4WT组(25例)患者的贫血更重、血小板计数更低、M蛋白水平更高、高黏滞症状更多见,差异有统计学意义(P值均〈0.05)。结论WM患者的预后较好,WPSS评分、是否继发淀粉样变性以及是否使用新药治疗是影响其预后的独立因素。WM患者的MYD88L265P突变率高,而CXCR4WHIM突变多与MYD88L265P突变伴发出现,其突变与一些临床特征相关。展开更多
文摘AIM: To investigate the effect and mechanism of blockade of the CXC chemokine receptor-4 (CXCR4) signaling pathway by AMD3100, a small non-peptide CXCR4 inhibitor, on invasion and metastasis of colorectal cancer cells in vitro. METHODS: Human colorectal cancer cell line SW480 was treated with AMD3100 at different final concentrations. 3-(4,5-dimethylthiazole-2-yl)-2.5-dipheny-ltetrazolium bromide (MTT) assay was used to detect the effect of AMD3100 on cell proliferation. The invasion ability of SW480 cells was determined by cell invasion assay kit. In the presence of AMD3100, the CXCL12-mediated migratory response of SW480 cells was tested by classical chemotaxis assays. RT-PCR analysis and Western blotting were used to detect the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in SW480 cells. RESULTS: Cell viability was significantly suppressed by AMD3100 in a dose-dependent manner. AMD3100 (100 and 1000 ng/mL) significantly inhibited the invasion ability of SW480 cells. Treatment with AMD3100 markedly reduced the expression of VEGF and MMP-9 but not MMP-2 in SW480 cells. CONCLUSION: The CXCL12/CXCR4 system is an important mediator of proliferation and invasion of CXCR4-expressing colorectal cancer cells. AMD3100 inhibited invasion and metastasis activity of the colorectalcancer cell line SW480 through down-regulation of VEGF and MMP-9 expression.
基金This research was supported by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office(I.A.P.Project 7/40)the Fund for Scientific Research of Flanders(FWOVlaanderen Projects G.0D25.17N,G.0764.14,and G.0D66.13)+1 种基金the Concerted Research Actions of the Regional Government of Flanders(GOA/12/017)C1 funding(C16/17/010)of KU Leuven.
文摘The CXC chemokine CXCL12 is an important factor in physiological and pathological processes, includingembryogenesis, hematopoiesis, angiogenesis and inflammation, because it activates and/or induces migration ofhematopoietic progenitor and stem cells, endothelial cells and most leukocytes. Therefore, CXCL12 activity istightly regulated at multiple levels. CXCL12 has the unique property of existing in six splice variants in humans,each having a specific tissue distribution and in vivo activity. Controlled splice variant transcription and mRNAstability determine the CXCL12 expression profile. CXCL12 fulfills its functions in homeostatic and pathologicalconditions by interacting with its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3(ACKR3) and by binding to glycosaminoglycans (GAGs) in tissues and on the endothelium to allow a properpresentation to passing leukocytes. Homodimerizaton and heterodimerization of CXCL12 and its receptors can altertheir signaling activity, as exemplified by the synergy between CXCL12 and other chemokines in leukocyte migrationassays. Receptor binding may also initiate CXCL12 internalization and its subsequent removal from theenvironment. Furthermore, CXCL12 activity is regulated by posttranslational modifications. Proteolytic removal ofNH2- or COOH-terminal amino acids, citrullination of arginine residues by peptidyl arginine deiminases or nitrationof tyrosine residues reduce CXCL12 activity. This review summarizes the interactions of CXCL12 with the cellularenvironment and discusses the different levels of CXCL12 activity regulation.
文摘Chemokines are involved in human hepatocellular carcinoma (HCC) carcinogenesis. However, the exact mechanism of chemokines in HCC carcinogenesis remains unknown. Here we investigated the roles of chemokine receptor 4 (CXCR4) and chemokine ligand 12 (CXCL12) in the metastasis of HCC. We found that the expression levels of CXCR4 mRNA in HCC tissues, MHCC97 cells, and HUVEC cells were 2.52 ±1.13, 2.34 ±1.16 and 1.63 ±1.26, respectively and that the CXCR4 protein levels were 1.38 ± 0.13, 1.96± 0.32 and 1.86 ±0.21, respectively. In contrast, CXCR4 was not detected in normal hepatic tissues. In 78 HCC patients, we also found that the concentration of CXCL12 in cancerous ascitic fluid was 783-8,364 pg/ml and that CXCL12 mRNA level in HCC metastasis portal lymph nodes was 1.21 ± 0.87 but undetectable in normal hepatic tissues. Finally we discovered that recombinant human CXCL12 could induce MHCC97 cells and HUVEC cells to migrate with chemotactic indexes (CI) of 3.9 ±1.1 and 4.1± 1.6, respectively. Cancerous ascitic fluid could also induce the migration of MHCC97 cells with a CI of 1.9 ± 0.8. Thus, our data suggest that CXCR4 and CXCL12 may play an important role in the metastasis of HCC by promoting the migration of tumor cells.
基金Supported by The National Natural Science Foundation of China, No. 30772542
文摘AIM:To investigate the role of CXC chemokine receptor-4 (CXCR4) and stromal cell-derived factor-1 (SDF-1) in lymph node metastasis of gastric carcinoma.METHODS:In 40 cases of gastric cancer,expression of CXCR4 mRNA in cancer and normal mucous membrane and SDF-1 mRNA in lymph nodes around the stomach was detected using quantitative polymerase chain reaction (PCR) (TaqMan) and immunohistochemistric assay.SGC-7901 and MGC80-3 cancer cells were used to investigate the effect of SDF-1 on cell proliferation and migration.RESULTS:Quantitative reverse transcription PCR and immunohistochemistry revealed that the expression level of CXCR4 in gastric cancer was significantly higher than that in normal mucous membrane (1.6244 ± 1.3801 vs 1.0715 ± 0.5243,P < 0.05).The expression level of CXCR4 mRNA in gastric cancer with lymph node metastasis was also significantly higher than that without lymph node metastasis (0.823 ± 0.551 vs 0.392 ± 0.338,P < 0.05).CXCR4 expression was significantly related to poorly differentiated,high tumor stage and lymph node metastasis.Significant differences in the expression level of SDF-1 mRNA were found between lymph nodes in metastatic gastric cancer and normal nodes (0.5432 ± 0.4907 vs 0.2640 ± 0.2601,P < 0.05).The positive expression of SDF-1 mRNA in lymph nodes of metastatic gastric cancer was consistent with the positive expression of CXCR4 mRNA in gastric cancer (r=0.776,P < 0.01).Additionally,human gastric cancer cell lines expressed CXCR4 and showed vigorous proliferation and migratory responses to SDF-1.AMD3100 (a specific CXCR4 antagonist) was also found to effectively reduce the migration of gastric cancer cells.CONCLUSION:The CXCR4/SDF-1 axis is involved in the lymph node metastasis of gastric cancer.CXCR4 is considered as a potential therapeutic target in the treatment of gastric cancer.
基金Supported by the Grant from National Center for Genetic Engineering and Biotechnology,Thailand and Rajavithi HospitalFund
文摘AIM: To evaluate the expression of C-X-C motif chemokine receptor 4 (CXCR4) and its signaling cascades, which were previously identified as a key factor for cancer cell progression and metastasis, in cholangiocarcinoma cell lines. METHODS: The expression of CXCR4 and its signaling cascades were determined in the cholangiocarcinoma cell lines (RMCCA1 and KKU100) by Western blotting. The invasion assays and the detection of actin polymerization were tested in these cholangiocarcinoma cells treated with CXC chemokine ligand -12 (CXCL12). RESULTS: Expression of CXCR4 was detected in both cholangiocarcinoma cell lines and activation of CXCR4 with CXCL12 triggered the signaling via the extracellular signal-regulated kinase-1/2 (ERK1/2) and phosphoinositide 3-kinase (PI3K) and induction of cholangiocarcinoma cell invasion, and displayed high levels of actin polymerization. Addition of CXCR4 inhibitor (AMD3100) abrogated CXCL12-induced phosphorylation of MEKI/2 and Akt in these cells. Moreover, treatment with MEK1/2 inhibitor (U0126) or PI3K inhibitor (LY294002) also attenuated the effect of CXCL12- induced cholangiocarcinoma cell invasion. CONCLUSION: These results indicated that the activation of CXCR4 and its signaling pathways (MEK1/2 and Akt) are essential for CXCL12-induced cholangiocarcinoma cell invasion. This rises Implications on a potential role for the inhibition of CXCR4 or its signal cascades in the treatment of cholangiocarcinoma.
文摘目的总结93例华氏巨球蛋白血症(WM)患者的临床特征、MYD88L265P及CXCR4WHIM突变情况、治疗选择和生存预后。方法回顾性分析2000年1月至2016年8月在北京协和医院初诊的症状性WM患者的临床特征、国际预后指数评分(WPSS)和总体生存(OS);其中34例患者检测了MYD88L265P和CXCR4WHIM突变。结果93例患者男女比例为2.44∶1,中位年龄64(33~85)岁。WPSS分层:低危组16例(17.2%),中危组44例(47.3%),高危组33例(35.5%)。中位随访44(1~201)个月,中位OS期为84个月。Cox多因素分析显示:WPSS危险分层(HR=2.342,95% CI 1.111~4.950,P=0.025)、继发淀粉样变性(HR=5.538,95% CI 1.958~15.662,P=0.001)以及新药治疗(HR=3.392,95% CI 1.531~7.513,P=0.003)均是影响患者OS的独立预后因素。34例患者中32例(94.1%)存在MYD88L265P突变,8例(23.5%)存在CXCR4WHIM突变。MYD88 L265PCXCR4WHIM突变组(7例)较MYD88 L265PCXCR4WT组(25例)患者的贫血更重、血小板计数更低、M蛋白水平更高、高黏滞症状更多见,差异有统计学意义(P值均〈0.05)。结论WM患者的预后较好,WPSS评分、是否继发淀粉样变性以及是否使用新药治疗是影响其预后的独立因素。WM患者的MYD88L265P突变率高,而CXCR4WHIM突变多与MYD88L265P突变伴发出现,其突变与一些临床特征相关。