We demonstrate a simple and controllable way to synthesize large-area, few-layer graphene on iron substrates by an optimized chemical vapor deposition (CVD) method using a mixture of methane and hydrogen. Based on a...We demonstrate a simple and controllable way to synthesize large-area, few-layer graphene on iron substrates by an optimized chemical vapor deposition (CVD) method using a mixture of methane and hydrogen. Based on an analysis of the Fe-C phase diagram, a suitable procedure for the successful synthesis of graphene on Fe surfaces was designed. An appropriate temperature and cooling process were found to be very important in the synthesis of highly crystalline few-layer graphene. Graphene-based field-effect transistor (FET) devices were fabricated using the resulting few-layer graphene, and showed good quality with extracted mobilities of 300-1150 cm2/(V.s).展开更多
Fe-Mo-Mg-O catalyst prepared by combustion method has great efficiency to grow carbon nanotubes with CVD method. Through investigation of TEM, it is found that bundles of multi-wall carbon nanotubes (MWCNT) can be got...Fe-Mo-Mg-O catalyst prepared by combustion method has great efficiency to grow carbon nanotubes with CVD method. Through investigation of TEM, it is found that bundles of multi-wall carbon nanotubes (MWCNT) can be got when the catalyst is directly used to synthesize the product in CH 4/H 2 atmosphere; however, the dispersed carbon nanotubes are obtained while the catalyst is reduced firstly in the H 2 before the synthesis. The morphology and structure of the catalysts before and after reduced are analyzed by TEM and XRD. The growth mechanism is suggeested for the formation off these two kinds of carbon nanotubes.展开更多
Silylated Ti-grafted hexagonal mesoporous silica (HMS) catalyst was prepared by the chemical vapor deposition (CVD) using TIC14 as titanium source and hexamethyldisilazane (HMDSZ) as silylating agent. The sample...Silylated Ti-grafted hexagonal mesoporous silica (HMS) catalyst was prepared by the chemical vapor deposition (CVD) using TIC14 as titanium source and hexamethyldisilazane (HMDSZ) as silylating agent. The samples were characterized by XRD, N2- adsorption, PTIR, 29Si NMR, DR UV-vis, and evaluated by epoxidation of styrene, propylene, cyclohexene, and 1-hexene with cumene hydroperoxide (CLIP) as oxidant, respectively. It is revealed that the catalyst possesses typical mesoporous structure, high hydrophobicity and highly dispersed tetracoordinated titanium sites and hence exhibits excellent performance in epoxidation of olefins.展开更多
文摘We demonstrate a simple and controllable way to synthesize large-area, few-layer graphene on iron substrates by an optimized chemical vapor deposition (CVD) method using a mixture of methane and hydrogen. Based on an analysis of the Fe-C phase diagram, a suitable procedure for the successful synthesis of graphene on Fe surfaces was designed. An appropriate temperature and cooling process were found to be very important in the synthesis of highly crystalline few-layer graphene. Graphene-based field-effect transistor (FET) devices were fabricated using the resulting few-layer graphene, and showed good quality with extracted mobilities of 300-1150 cm2/(V.s).
文摘Fe-Mo-Mg-O catalyst prepared by combustion method has great efficiency to grow carbon nanotubes with CVD method. Through investigation of TEM, it is found that bundles of multi-wall carbon nanotubes (MWCNT) can be got when the catalyst is directly used to synthesize the product in CH 4/H 2 atmosphere; however, the dispersed carbon nanotubes are obtained while the catalyst is reduced firstly in the H 2 before the synthesis. The morphology and structure of the catalysts before and after reduced are analyzed by TEM and XRD. The growth mechanism is suggeested for the formation off these two kinds of carbon nanotubes.
文摘Silylated Ti-grafted hexagonal mesoporous silica (HMS) catalyst was prepared by the chemical vapor deposition (CVD) using TIC14 as titanium source and hexamethyldisilazane (HMDSZ) as silylating agent. The samples were characterized by XRD, N2- adsorption, PTIR, 29Si NMR, DR UV-vis, and evaluated by epoxidation of styrene, propylene, cyclohexene, and 1-hexene with cumene hydroperoxide (CLIP) as oxidant, respectively. It is revealed that the catalyst possesses typical mesoporous structure, high hydrophobicity and highly dispersed tetracoordinated titanium sites and hence exhibits excellent performance in epoxidation of olefins.