Catalysts using α-FeOOH nanoparticles as the active ingredient were testedby a microreactor-chromatography assessing apparatus at atmospheric pressure between 25 and 60 ℃with a gas hourly space velocity of 10,000 h^...Catalysts using α-FeOOH nanoparticles as the active ingredient were testedby a microreactor-chromatography assessing apparatus at atmospheric pressure between 25 and 60 ℃with a gas hourly space velocity of 10,000 h^(-1), while the removal performance of H_2S withcatalysts was investigated using the thermal gravimetric method. The results show that the catalystsare highly active for COS hydrolysis at low temperatures (≤60 ℃) and high gas hourly spacevelocity, and the highest activity can reach 100%. The catalyst is particularly stable for 12 h, andno deactivation is observed. Nanoparticle α-FeOOH prepared using hydrated iron sulfate showshigher COS hydrolysis activity, and the optimum calcination temperature for the catalyst is 260 ℃.In addition, the catalysts can remove COS and H_2S simultaneously, and 60 ℃ is favorable for theremoval of H_2S. The compensation effect exists in nanoparticle-based catalysts.展开更多
文摘Catalysts using α-FeOOH nanoparticles as the active ingredient were testedby a microreactor-chromatography assessing apparatus at atmospheric pressure between 25 and 60 ℃with a gas hourly space velocity of 10,000 h^(-1), while the removal performance of H_2S withcatalysts was investigated using the thermal gravimetric method. The results show that the catalystsare highly active for COS hydrolysis at low temperatures (≤60 ℃) and high gas hourly spacevelocity, and the highest activity can reach 100%. The catalyst is particularly stable for 12 h, andno deactivation is observed. Nanoparticle α-FeOOH prepared using hydrated iron sulfate showshigher COS hydrolysis activity, and the optimum calcination temperature for the catalyst is 260 ℃.In addition, the catalysts can remove COS and H_2S simultaneously, and 60 ℃ is favorable for theremoval of H_2S. The compensation effect exists in nanoparticle-based catalysts.