Nanosized metal (Pt or Pd)-decorated TiO2 nanofibers (NFs) were synthesized by a wet impregnation method. CdSe quantum dots (QDs) were then anchored onto the metal-decorated TiO2 NFs. The photocatalytic performa...Nanosized metal (Pt or Pd)-decorated TiO2 nanofibers (NFs) were synthesized by a wet impregnation method. CdSe quantum dots (QDs) were then anchored onto the metal-decorated TiO2 NFs. The photocatalytic performance of these catalysts was tested for activation and reduction of CO2 under UV-B light. Gas chromatographic analysis indicated the formation of methanol, formic acid, and methyl formate as the primary products. In the absence of CdSe QDs, Pd-decorated TiO2 NFs were found to exhibit enhanced performance compared to Pt-decorated TiO2 NFs for methanol production. However, in the presence of CdSe, Pt-decorated TiO2 NFs exhibited higher selectivity for methanol, typically producing -90 ppmg^-1.h^-1 methanol. The CO2 photoreduction mechanism is proposed to take place via a hydrogenation pathway from first principles calculations, which complement the experimental observations.展开更多
COphotoreduction is an attractive process which allows the storage of solar energy and synthesis of solar fuels. Many different photocatalytic systems have been developed, while the alternative photo-reactors are stil...COphotoreduction is an attractive process which allows the storage of solar energy and synthesis of solar fuels. Many different photocatalytic systems have been developed, while the alternative photo-reactors are still insufficiently investigated. In this work, photoreduction of COwith HO into CHwas investigated in a modified concentrating solar reactor, using TiOand Pt/TiOas the catalysts. The TiOand Pt/TiOsamples were extensively characterized by different techniques including powder X-ray diffraction(XRD), Nadsorption/desorption and UV–vis absorption. The catalytic performance of the TiOand Pt/TiOsamples in the gas phase was evaluated under unconcentrated and concentrated Xe-lamp light and nature solar light with different concentrating ratios. Various parameters of the reaction system and the catalysts were investigated and optimized to maximize the catalytic performance of COreduction system. Compared with the normal light irradiation, the TiOand Pt/TiOsamples show higher photocatalytic activity(about 6–7 times) for reducing COinto CHunder concentrated Xe-lamp light and nature solar light. In the range of experimental light intensity, it is found that the concentration of the light makes it suitable for the catalytic reaction, and increases the utilization efficiency of the TiOand Pt/TiOsamples while does not decrease the quantum efficiency.展开更多
This perspective paper introduces the concept that nanocarbons and related materials such as carbon dots are an interesting intrinsic photocatalytic semiconducting material, and not only a modifier of the existing (se...This perspective paper introduces the concept that nanocarbons and related materials such as carbon dots are an interesting intrinsic photocatalytic semiconducting material, and not only a modifier of the existing (semiconducting) materials to prepare hybrid materials. The semiconducting properties of the nanocarbons, and the possibility to have the band gap within the visible-light region through defect band engineering, introduction of light heteroatoms and control/manipulation of the curvature or surface functionalization are discussed. These materials are conceptually different from the 'classical' semiconducting photocatalysts, because semiconductor domains with tuneable characteristics are embedded in a conductive carbon matrix, with the presence of various functional groups (as C=0 groups) enhancing charge separation by trapping electrons. These nanocarbons open a range of new possibilities for photocatalysis both for energetic and environmental applications. The use of nanocarbons as quantum dots and photo luminescent materials was also analysed. (C) 2017 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
The performance of CeO2-TiO2 photocatalyst for the photocatalytic reduction of CO2 into methanol was studied under visible light irradiation. The as-prepared catalysts were characterized for their structural, textural...The performance of CeO2-TiO2 photocatalyst for the photocatalytic reduction of CO2 into methanol was studied under visible light irradiation. The as-prepared catalysts were characterized for their structural, textural and optical properties using X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), X-ray photoelectron spectroscopy(XPS), nitrogen physisorption analysis, UV-vis spectroscopy and photoluminescence(PL) spectroscopy. The characterization results indicated that the presence of CeO2 stabilized the anatase phase of TiO2, decreased its crystallite size, increased the surface area, reduced the band gap energy and lowered the rate of electron-hole pair recombination. The CeO2-TiO2 photocatalyst showed an increased methanol yield of 18.6 μmol/g under visible light irradiation, compared to the bare TiO2(6.0 μmol/g).展开更多
Graphite phase carbon nitride(g-C_(3)N_(4))is a promising catalyst for artificial photocatalytic carbon dioxide(CO_(2))reduction.However,the fast carrier recombination and the inadequacy of the CO_(2)reduction active ...Graphite phase carbon nitride(g-C_(3)N_(4))is a promising catalyst for artificial photocatalytic carbon dioxide(CO_(2))reduction.However,the fast carrier recombination and the inadequacy of the CO_(2)reduction active site in g-C_(3)N_(4)block the escalation of the perfor-mance.In this work,NiCo layered double hydroxide(NiCo LDH)nanoflowers were self-assembled with ultrathin graphite phase carbon nitride(g-C_(3)N_(4))by an ultrasonic stirring strategy utilizing the Zeta potential difference.The formed NiCo LDH/ultrathin g-C_(3)N_(4)nanosheets(LDH-CN)photocatalysts own the merits of rich active sites and Z-scheme heterojunction,which lead to the enhanced CO_(2)reduction activity and selectivity.The highest yields of CO and CH_(4)were 114.24 and 26.48μmol·h^(-1)·g^(-1),which were much greater than those of g-C_(3)N_(4)and LDH.Meanwhile,the enhanced selectivity for CO confirmed the strong redox ability in the LDH-CN caused by the Z-scheme.The heterojunction-induced built-in electrical field can promote the separation and migration of photoinduced electrons and holes.This study provides a theoretical basis for designing high-performance photocatalysts.展开更多
The promising S-scheme heterojunction photocatalysts are considered as a novel frontier due to their superiority in various solar-driven energy-related applications.Recently,a novel atom-specific tailoring strategy ha...The promising S-scheme heterojunction photocatalysts are considered as a novel frontier due to their superiority in various solar-driven energy-related applications.Recently,a novel atom-specific tailoring strategy has been introduced on the construction of S-scheme het-erojunction for promoting the electronic transferability.The S-scheme heterojunction is regulated by integrating high-crystalline carbon nitride with Co-doped CeO_(2).Specifically,this atom-specific regulation of S-scheme heterojunction boosts directional electron-driving effect towards functionalized Co sites,benefit-ing for effective photogenerated charge carrier transferability.Moreover,a series of tracking characterizations show that Co-embedded modification promotes CO_(2)photoreduction into hydrogenation steps,resulting in high performance towards CO_(2)-to-CH_(4)photoreduction,which provides new opportunities for the development of multifunctional cooperation in heterogeneous photocatalysis.展开更多
Reducing CO_(2) to hydrocarbon fuels by solar irradiation provides a feasible channel for mitigating excessive CO_(2) emissions and addressing resource depletion.Nevertheless,severe charge recombi‐nation and the high...Reducing CO_(2) to hydrocarbon fuels by solar irradiation provides a feasible channel for mitigating excessive CO_(2) emissions and addressing resource depletion.Nevertheless,severe charge recombi‐nation and the high energy barrier for CO_(2) photoreduction on the surface of photocatalysts com‐promise the catalytic performance.Herein,a 2D/2D Bi_(2)MoO_(6)/BiOI composite was fabricated to achieve improved CO_(2) photoreduction efficiency.Charge transfer in the composite was facilitated by the van der Waals heterojunction with a large‐area interface.Work function calculation demon‐strated that S‐scheme charge transfer is operative in the composite,and effective charge separation and strong redox capability were revealed by time‐resolved photoluminescence and electron para‐magnetic resonance spectroscopy.Moreover,the intermediates of CO_(2) photoreduction were identi‐fied based on the in situ diffuse reflectance infrared Fourier‐transform spectra.Density functional theory calculations showed that CO_(2) hydrogenation is the rate‐determining step for yielding CH_(4) and CO.Introducing Bi_(2)MoO_(6) into the composite further decreased the energy barrier for CO_(2) photoreduction on BiOI by 0.35 eV.This study verifies the synergistic effect of the S‐scheme heterojunction and van der Waals heterojunction in the 2D/2D composite.展开更多
Photocatalytic conversion of CO_(2) to high-value products plays a crucial role in the global pursuit of carbon–neutral economy.Junction photocatalysts,such as the isotype heterojunctions,offer an ideal paradigm to n...Photocatalytic conversion of CO_(2) to high-value products plays a crucial role in the global pursuit of carbon–neutral economy.Junction photocatalysts,such as the isotype heterojunctions,offer an ideal paradigm to navigate the photocatalytic CO_(2) reduction reaction(CRR).Herein,we elucidate the behaviors of isotype heterojunctions toward photocatalytic CRR over a representative photocatalyst,g-C_(3)N_(4).Impressively,the isotype heterojunctions possess a significantly higher efficiency for the spatial separation and transfer of photogenerated carriers than the single components.Along with the intrinsically outstanding stability,the isotype heterojunctions exhibit an exceptional and stable activity toward the CO_(2) photoreduction to CO.More importantly,by combining quantitative in situ technique with the first-principles modeling,we elucidate that the enhanced photoinduced charge dynamics promotes the production of key intermediates and thus the whole reaction kinetics.展开更多
Photoreduction of CO_(2) to solar fuels has caused great interest,but suffers from low catalytic efficiency and poor selectivity.Herein,we designed a S-scheme heterojunction(Cu-TiO_(2)/WO_(3))with Cu single atom to si...Photoreduction of CO_(2) to solar fuels has caused great interest,but suffers from low catalytic efficiency and poor selectivity.Herein,we designed a S-scheme heterojunction(Cu-TiO_(2)/WO_(3))with Cu single atom to significantly boost the photoreduction of CO_(2).Notably,the developed Cu-TiO_(2)/WO_(3) achieved the solardriven conversion of CO_(2) to CH_(4) with an evolution rate of 98.69μmol g^(−1) h^(−1),and the electron selectivity of CH_(4) reached 88.5%.The yield was much higher than those of pristine WO_(3),TiO_(2)/WO_(3) and Cu-TiO_(2) samples.Experimental and theoretical analysis suggested that the S-scheme heterojunction accelerated charge migration and inhibited the recombination of electron-hole pairs.Importantly,the charge separation effect of the heterojunction meliorated the position of the d-band.The uplifted d-band centers of Cu and Ti on Cu-TiO_(2)/WO_(3) not only improved the electron interaction between Cu single atoms and substrate-TiO_(2),accelerated the adsorption and activation of CO_(2) on the active sites of Cu single atom,but also optimized the Gibbs free energies of CH 4 formation pathway,leading to excellent selectivity toward CH_(4).This work provides new insights into the design of photocatalyst systems with high photocatalytic performance.展开更多
Surface charge localization and inferior charge transfer efficiency seriously restrict the supply of reactive hydrogen and the reaction dynamics of CO_(2) photoreduction performance of photocatalysts.Herein,chemically...Surface charge localization and inferior charge transfer efficiency seriously restrict the supply of reactive hydrogen and the reaction dynamics of CO_(2) photoreduction performance of photocatalysts.Herein,chemically bonded BiVO_(4)/Bi_(19)Cl_(3)S_(27)(BVO/BCS)S-scheme heterojunction with a strong internal electric field is designed.Experimental and density function theory calculation results confirm that the elaborated heterojunction accelerates the vectorial migration of photogenerated charges from BiVO_(4) to Bi_(19)Cl_(3)S_(27) via the interfacial chemical bonding interactions(i.e.,Bi-O and Bi-S bonds)between Bi atoms of BVO and S atoms of BCS or Bi atoms of BCS and O atoms of BVO under light irradiation,breaking the interfacial barrier and surface charge localization of Bi_(19)Cl_(3)S_(27),and further decreasing the energy of reactive hydrogen generation,CO_(2) absorption and activation.The separation efficiency of photogenerated carriers is much more efficient than that counterpart individual in BVO/BCS S-scheme heterojunction system.As a result,BVO/BCS heterojunction exhibits a significantly improved continuous photocatalytic performance for CO_(2) reduction and the 24 h CO yield reaches 678.27μmol⋅g^(-1).This work provides an atomic-level insight into charge transfer kinetics and CO_(2) reduction mechanism in S-scheme heterojunction.展开更多
Utilizing solar energy to achieve artificial photosynthesis of chemical fuel is prevalent in tackling excessive CO_(2)emission and fossil fuel depletion.Grievous charge recombination and weak redox capability aggravat...Utilizing solar energy to achieve artificial photosynthesis of chemical fuel is prevalent in tackling excessive CO_(2)emission and fossil fuel depletion.Grievous charge recombination and weak redox capability aggravate the CO_(2)photoreduction performance.Engineering tailored morphology and constructing matched heterostructure are two significant schemes to ameliorate the CO_(2)photoconversion efficiency of g-C_(3)N_(4)-based composite.Herein,a novel S-scheme ultrathin porous g-C_(3)N_(4)(UPCN)/Ag_(2)MoO_(4)(AMO)composite was designed by in-situ growing tetragonalα-AMO nanoparticles(NPs)(5-30 nm)on UPCN nanosheets(NSs).The S-scheme charge transfer route endows UPCN/AMO with fast charge separation and strong redox capability,demonstrated by X-ray photoelectron spectroscopy(XPS),photoelectrochemical tests,steady-state and time-resolved photoluminescence(PL)spectra,and DFT calculations.The UPCN/AMO composite exhibits elevated CO_(2)photoreduction performance with CO and CH_(4)yield rates of 6.98 and 0.38μmol g^(-1)h^(-1),which are 3.5 and 2.9 folds higher than that of pristine UPCN,respectively.Finally,the CO_(2)photoreduction intermediates are analyzed,and the CO_(2)photoreduction mechanism is discussed.This work provides a reference for various g-C_(3)N_(4)-based composites applied in artificial photosynthesis.展开更多
Oxygen vacancy plays vital roles in regulating the electronic and charge distribution of the oxygen deficient materials.Herein,abundant oxygen vacancies are created during assembling the two-dimensional(2D)ultra-thin ...Oxygen vacancy plays vital roles in regulating the electronic and charge distribution of the oxygen deficient materials.Herein,abundant oxygen vacancies are created during assembling the two-dimensional(2D)ultra-thin Bi_(2)MoO_(6) nanoflakes into three dimensional(3D)Bi_(2)MoO_(6) nanospheres,resulting in significantly improved performance for photocatalytical conversion of CO_(2) into liquid hydrocarbons.The increased performance is contributed by two primary sites,namely the abundant oxygen vacancy and the exposed molybdenum(Mo)atom induced by oxygen-migration,as revealed by the theoretical calculation.The oxygen vacancy(Ov)and uncovered Mo atom serving as dual binding sites for trapping CO_(2) molecules render the synchronous fixation-reduction process,resulting in the decline of activation energy for CO_(2) reduction from 2.15 eV on bulk Bi_(2)MoO_(6) to 1.42 eV on Ov-rich Bi_(2)MoO_(6).Such a striking decrease in the activation energy induces the efficient selective generation of liquid hydrocarbons,especially the methanol(C_(2)H_(5) OH)and ethanol(CH_(3) OH).The yields of CH_(3) OH and C_(2)H_(5) OH over the optimal Ov-Bi_(2)MoO_(6) is high up to 106.5 and 10.3μmol g^(-1) respectively,greatly outperforming that on the Bulk-Bi_(2)MoO_(6).展开更多
Modulating electronic structures of single-atom metal cocatalysts is vital for highly active photoreduction of CO_(2),and it's especially challenging to develop a facile method to modify the dispersion of atomical...Modulating electronic structures of single-atom metal cocatalysts is vital for highly active photoreduction of CO_(2),and it's especially challenging to develop a facile method to modify the dispersion of atomical photocatalytic sites.We herein report an ion-loading pyrolysis route to in-situ anchor Pd single atoms as well as twinned Pd nanoparticles on ultra-thin graphitic carbon nitride nanosheets(PdTP/Pd_(SA)-CN)for high-efficiency photoreduction of CO_(2).The anchored Pd twinned nanoparticles donate electrons to adjacent single Pd–N_(4) sites through the carbon nitride networks,and the optimized PdTP/Pd_(SA)-CN photocatalyst exhibits a CO evolution rate up to 46.5μmol g^(-1) h^(-1) with nearly 100%selectivity.As revealed by spectroscopic and theoretical analyses,the superior photocatalytic activity is attributed to the lowered desorption barrier of carbonyl species at electron-enriched Pd single atoms,together with the improved efficiencies of light-harvesting and charge separation/transport.This work has demonstrated the engineering of the electron density of single active sites with twinned metal nanoparticles assisted by strong electronic interaction with the support of the atomic metal,and unveiled the underlying mechanism for expedited photocatalytic efficiency.展开更多
文摘Nanosized metal (Pt or Pd)-decorated TiO2 nanofibers (NFs) were synthesized by a wet impregnation method. CdSe quantum dots (QDs) were then anchored onto the metal-decorated TiO2 NFs. The photocatalytic performance of these catalysts was tested for activation and reduction of CO2 under UV-B light. Gas chromatographic analysis indicated the formation of methanol, formic acid, and methyl formate as the primary products. In the absence of CdSe QDs, Pd-decorated TiO2 NFs were found to exhibit enhanced performance compared to Pt-decorated TiO2 NFs for methanol production. However, in the presence of CdSe, Pt-decorated TiO2 NFs exhibited higher selectivity for methanol, typically producing -90 ppmg^-1.h^-1 methanol. The CO2 photoreduction mechanism is proposed to take place via a hydrogenation pathway from first principles calculations, which complement the experimental observations.
基金financially supported by the National Natural Science Foundation of China(NSFC)(22371033,22175033,and 22266028)the Outstanding Young Technology Talent Foundation of Jilin Province(20230508108RC)+4 种基金the Fundamental Research Funds for the Central Universities(2412019FZ007)the Natural Science Foundation of Hainan Province(823MS062)the Foundation of Xinzhou Teachers University(2021KY07)the Science and Technology Innovation Project of Higher Education in Shanxi Province(2021L450)the Youth Science Research Project of Shanxi Province(202103021223362)。
文摘COphotoreduction is an attractive process which allows the storage of solar energy and synthesis of solar fuels. Many different photocatalytic systems have been developed, while the alternative photo-reactors are still insufficiently investigated. In this work, photoreduction of COwith HO into CHwas investigated in a modified concentrating solar reactor, using TiOand Pt/TiOas the catalysts. The TiOand Pt/TiOsamples were extensively characterized by different techniques including powder X-ray diffraction(XRD), Nadsorption/desorption and UV–vis absorption. The catalytic performance of the TiOand Pt/TiOsamples in the gas phase was evaluated under unconcentrated and concentrated Xe-lamp light and nature solar light with different concentrating ratios. Various parameters of the reaction system and the catalysts were investigated and optimized to maximize the catalytic performance of COreduction system. Compared with the normal light irradiation, the TiOand Pt/TiOsamples show higher photocatalytic activity(about 6–7 times) for reducing COinto CHunder concentrated Xe-lamp light and nature solar light. In the range of experimental light intensity, it is found that the concentration of the light makes it suitable for the catalytic reaction, and increases the utilization efficiency of the TiOand Pt/TiOsamples while does not decrease the quantum efficiency.
基金Financial support from the Italian MIUR gh the PRIN Project 2015K7FZLH SMARTNESS "Solar driven chemistry:new materials for photo- and electro-catalysis"SINCHEM,a Joint Doctorate programme selected under the Erasmus Mundus Action 1 Programme (FPA 2013-0037)
文摘This perspective paper introduces the concept that nanocarbons and related materials such as carbon dots are an interesting intrinsic photocatalytic semiconducting material, and not only a modifier of the existing (semiconducting) materials to prepare hybrid materials. The semiconducting properties of the nanocarbons, and the possibility to have the band gap within the visible-light region through defect band engineering, introduction of light heteroatoms and control/manipulation of the curvature or surface functionalization are discussed. These materials are conceptually different from the 'classical' semiconducting photocatalysts, because semiconductor domains with tuneable characteristics are embedded in a conductive carbon matrix, with the presence of various functional groups (as C=0 groups) enhancing charge separation by trapping electrons. These nanocarbons open a range of new possibilities for photocatalysis both for energetic and environmental applications. The use of nanocarbons as quantum dots and photo luminescent materials was also analysed. (C) 2017 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金the Ministry of Education (MOE), Universiti Kebangsaan Malaysia and Universiti Malaysia Pahang for financial support of this research under RAGS (RDU131418) and FRGS (RDU120112)
文摘The performance of CeO2-TiO2 photocatalyst for the photocatalytic reduction of CO2 into methanol was studied under visible light irradiation. The as-prepared catalysts were characterized for their structural, textural and optical properties using X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), X-ray photoelectron spectroscopy(XPS), nitrogen physisorption analysis, UV-vis spectroscopy and photoluminescence(PL) spectroscopy. The characterization results indicated that the presence of CeO2 stabilized the anatase phase of TiO2, decreased its crystallite size, increased the surface area, reduced the band gap energy and lowered the rate of electron-hole pair recombination. The CeO2-TiO2 photocatalyst showed an increased methanol yield of 18.6 μmol/g under visible light irradiation, compared to the bare TiO2(6.0 μmol/g).
基金financially supported by the National Natural Science Foundation of China (Nos.22005123, 21776118,22178152 and 22008095)Jiangsu University Foundation (No.20JDG16)+4 种基金Jiangsu Funds for Distinguished Young Scientists (No.BK20190045)the Special Foundation of China Postdoctoral (No.2020TQ0127)Jiangsu Province Postdoctoral Science Foundation (Nos.2021K396C and 2021K382C)Jiangsu Agricultural Science and Technology Independent Innovation Fund (No.CX (21)3067)the Postgraduate High-tech Research Key Laboratory of Zhenjiang (No.SS2018002)
文摘Graphite phase carbon nitride(g-C_(3)N_(4))is a promising catalyst for artificial photocatalytic carbon dioxide(CO_(2))reduction.However,the fast carrier recombination and the inadequacy of the CO_(2)reduction active site in g-C_(3)N_(4)block the escalation of the perfor-mance.In this work,NiCo layered double hydroxide(NiCo LDH)nanoflowers were self-assembled with ultrathin graphite phase carbon nitride(g-C_(3)N_(4))by an ultrasonic stirring strategy utilizing the Zeta potential difference.The formed NiCo LDH/ultrathin g-C_(3)N_(4)nanosheets(LDH-CN)photocatalysts own the merits of rich active sites and Z-scheme heterojunction,which lead to the enhanced CO_(2)reduction activity and selectivity.The highest yields of CO and CH_(4)were 114.24 and 26.48μmol·h^(-1)·g^(-1),which were much greater than those of g-C_(3)N_(4)and LDH.Meanwhile,the enhanced selectivity for CO confirmed the strong redox ability in the LDH-CN caused by the Z-scheme.The heterojunction-induced built-in electrical field can promote the separation and migration of photoinduced electrons and holes.This study provides a theoretical basis for designing high-performance photocatalysts.
基金supported by the National Natural Science Foundation of China(Nos.51961135303 and 51932007)China Postdoctoral Science Foundation(No.2021TQ0310)。
文摘The promising S-scheme heterojunction photocatalysts are considered as a novel frontier due to their superiority in various solar-driven energy-related applications.Recently,a novel atom-specific tailoring strategy has been introduced on the construction of S-scheme het-erojunction for promoting the electronic transferability.The S-scheme heterojunction is regulated by integrating high-crystalline carbon nitride with Co-doped CeO_(2).Specifically,this atom-specific regulation of S-scheme heterojunction boosts directional electron-driving effect towards functionalized Co sites,benefit-ing for effective photogenerated charge carrier transferability.Moreover,a series of tracking characterizations show that Co-embedded modification promotes CO_(2)photoreduction into hydrogenation steps,resulting in high performance towards CO_(2)-to-CH_(4)photoreduction,which provides new opportunities for the development of multifunctional cooperation in heterogeneous photocatalysis.
文摘Reducing CO_(2) to hydrocarbon fuels by solar irradiation provides a feasible channel for mitigating excessive CO_(2) emissions and addressing resource depletion.Nevertheless,severe charge recombi‐nation and the high energy barrier for CO_(2) photoreduction on the surface of photocatalysts com‐promise the catalytic performance.Herein,a 2D/2D Bi_(2)MoO_(6)/BiOI composite was fabricated to achieve improved CO_(2) photoreduction efficiency.Charge transfer in the composite was facilitated by the van der Waals heterojunction with a large‐area interface.Work function calculation demon‐strated that S‐scheme charge transfer is operative in the composite,and effective charge separation and strong redox capability were revealed by time‐resolved photoluminescence and electron para‐magnetic resonance spectroscopy.Moreover,the intermediates of CO_(2) photoreduction were identi‐fied based on the in situ diffuse reflectance infrared Fourier‐transform spectra.Density functional theory calculations showed that CO_(2) hydrogenation is the rate‐determining step for yielding CH_(4) and CO.Introducing Bi_(2)MoO_(6) into the composite further decreased the energy barrier for CO_(2) photoreduction on BiOI by 0.35 eV.This study verifies the synergistic effect of the S‐scheme heterojunction and van der Waals heterojunction in the 2D/2D composite.
基金This work was financially supported in part by the National Natural Science Foundation of China(Grant Nos.12047564,52071041,12074048)the Project for Fundamental and Frontier Research in Chongqing(cstc2020jcyj-msxmX0777 and cstc2020jcyj-msxmX0796)+1 种基金the Fundamental Research Funds for the Central Universities(cqu2018CDHB1A09,106112016CDJZR308808)Open access funding provided by Shanghai Jiao Tong University
文摘Photocatalytic conversion of CO_(2) to high-value products plays a crucial role in the global pursuit of carbon–neutral economy.Junction photocatalysts,such as the isotype heterojunctions,offer an ideal paradigm to navigate the photocatalytic CO_(2) reduction reaction(CRR).Herein,we elucidate the behaviors of isotype heterojunctions toward photocatalytic CRR over a representative photocatalyst,g-C_(3)N_(4).Impressively,the isotype heterojunctions possess a significantly higher efficiency for the spatial separation and transfer of photogenerated carriers than the single components.Along with the intrinsically outstanding stability,the isotype heterojunctions exhibit an exceptional and stable activity toward the CO_(2) photoreduction to CO.More importantly,by combining quantitative in situ technique with the first-principles modeling,we elucidate that the enhanced photoinduced charge dynamics promotes the production of key intermediates and thus the whole reaction kinetics.
基金supported by the grants from the National Natural Science Foundation of China(Nos.21872102 and 22172080)the Tianjin“Project+Team”innovation team,2020.
文摘Photoreduction of CO_(2) to solar fuels has caused great interest,but suffers from low catalytic efficiency and poor selectivity.Herein,we designed a S-scheme heterojunction(Cu-TiO_(2)/WO_(3))with Cu single atom to significantly boost the photoreduction of CO_(2).Notably,the developed Cu-TiO_(2)/WO_(3) achieved the solardriven conversion of CO_(2) to CH_(4) with an evolution rate of 98.69μmol g^(−1) h^(−1),and the electron selectivity of CH_(4) reached 88.5%.The yield was much higher than those of pristine WO_(3),TiO_(2)/WO_(3) and Cu-TiO_(2) samples.Experimental and theoretical analysis suggested that the S-scheme heterojunction accelerated charge migration and inhibited the recombination of electron-hole pairs.Importantly,the charge separation effect of the heterojunction meliorated the position of the d-band.The uplifted d-band centers of Cu and Ti on Cu-TiO_(2)/WO_(3) not only improved the electron interaction between Cu single atoms and substrate-TiO_(2),accelerated the adsorption and activation of CO_(2) on the active sites of Cu single atom,but also optimized the Gibbs free energies of CH 4 formation pathway,leading to excellent selectivity toward CH_(4).This work provides new insights into the design of photocatalyst systems with high photocatalytic performance.
基金financially supported by Outstanding Talent Research Fund of Zhengzhou University,China Postdoc toral Science Foundation(2020TQ0277,2020M682328)Central Plains Science and Technology Innovation Leader Project(214200510006)+1 种基金China Scholarship Council(No.202108410356)Postdoctoral Science Foundation of Henan province(202002010).
文摘Surface charge localization and inferior charge transfer efficiency seriously restrict the supply of reactive hydrogen and the reaction dynamics of CO_(2) photoreduction performance of photocatalysts.Herein,chemically bonded BiVO_(4)/Bi_(19)Cl_(3)S_(27)(BVO/BCS)S-scheme heterojunction with a strong internal electric field is designed.Experimental and density function theory calculation results confirm that the elaborated heterojunction accelerates the vectorial migration of photogenerated charges from BiVO_(4) to Bi_(19)Cl_(3)S_(27) via the interfacial chemical bonding interactions(i.e.,Bi-O and Bi-S bonds)between Bi atoms of BVO and S atoms of BCS or Bi atoms of BCS and O atoms of BVO under light irradiation,breaking the interfacial barrier and surface charge localization of Bi_(19)Cl_(3)S_(27),and further decreasing the energy of reactive hydrogen generation,CO_(2) absorption and activation.The separation efficiency of photogenerated carriers is much more efficient than that counterpart individual in BVO/BCS S-scheme heterojunction system.As a result,BVO/BCS heterojunction exhibits a significantly improved continuous photocatalytic performance for CO_(2) reduction and the 24 h CO yield reaches 678.27μmol⋅g^(-1).This work provides an atomic-level insight into charge transfer kinetics and CO_(2) reduction mechanism in S-scheme heterojunction.
基金supported by the National Natural Science Foundation of China(51572103 and 51973078)the Distinguished Young Scholar of Anhui Province(1808085J14)+1 种基金the Major Projects of Education Department of Anhui Province(KJ2020ZD005)the Key Foundation of Educational Commission of Anhui Province(KJ2019A0595)。
文摘Utilizing solar energy to achieve artificial photosynthesis of chemical fuel is prevalent in tackling excessive CO_(2)emission and fossil fuel depletion.Grievous charge recombination and weak redox capability aggravate the CO_(2)photoreduction performance.Engineering tailored morphology and constructing matched heterostructure are two significant schemes to ameliorate the CO_(2)photoconversion efficiency of g-C_(3)N_(4)-based composite.Herein,a novel S-scheme ultrathin porous g-C_(3)N_(4)(UPCN)/Ag_(2)MoO_(4)(AMO)composite was designed by in-situ growing tetragonalα-AMO nanoparticles(NPs)(5-30 nm)on UPCN nanosheets(NSs).The S-scheme charge transfer route endows UPCN/AMO with fast charge separation and strong redox capability,demonstrated by X-ray photoelectron spectroscopy(XPS),photoelectrochemical tests,steady-state and time-resolved photoluminescence(PL)spectra,and DFT calculations.The UPCN/AMO composite exhibits elevated CO_(2)photoreduction performance with CO and CH_(4)yield rates of 6.98 and 0.38μmol g^(-1)h^(-1),which are 3.5 and 2.9 folds higher than that of pristine UPCN,respectively.Finally,the CO_(2)photoreduction intermediates are analyzed,and the CO_(2)photoreduction mechanism is discussed.This work provides a reference for various g-C_(3)N_(4)-based composites applied in artificial photosynthesis.
基金financially supported by the National Natural Science Foundation of China(Grants 52072165,52070092,51662031)。
文摘Oxygen vacancy plays vital roles in regulating the electronic and charge distribution of the oxygen deficient materials.Herein,abundant oxygen vacancies are created during assembling the two-dimensional(2D)ultra-thin Bi_(2)MoO_(6) nanoflakes into three dimensional(3D)Bi_(2)MoO_(6) nanospheres,resulting in significantly improved performance for photocatalytical conversion of CO_(2) into liquid hydrocarbons.The increased performance is contributed by two primary sites,namely the abundant oxygen vacancy and the exposed molybdenum(Mo)atom induced by oxygen-migration,as revealed by the theoretical calculation.The oxygen vacancy(Ov)and uncovered Mo atom serving as dual binding sites for trapping CO_(2) molecules render the synchronous fixation-reduction process,resulting in the decline of activation energy for CO_(2) reduction from 2.15 eV on bulk Bi_(2)MoO_(6) to 1.42 eV on Ov-rich Bi_(2)MoO_(6).Such a striking decrease in the activation energy induces the efficient selective generation of liquid hydrocarbons,especially the methanol(C_(2)H_(5) OH)and ethanol(CH_(3) OH).The yields of CH_(3) OH and C_(2)H_(5) OH over the optimal Ov-Bi_(2)MoO_(6) is high up to 106.5 and 10.3μmol g^(-1) respectively,greatly outperforming that on the Bulk-Bi_(2)MoO_(6).
基金We appreciate the financial support from the National Natural Science Foundation of China(22272150,22102145)the Major Program of Zhejiang Provincial Natural Science Foundation(LD22B030002)+3 种基金Zhejiang Provincial Ten Thousand Talent Program(2021R51009)Zhejiang Provincial Natural Science Foundation of China(LQ23B030006,LY22B030012)Shandong Provincial Natural Science Foundation of China(2020MB053)the Fundamental Research Funds for the Central Universities(DUT22RC(3)084).
文摘Modulating electronic structures of single-atom metal cocatalysts is vital for highly active photoreduction of CO_(2),and it's especially challenging to develop a facile method to modify the dispersion of atomical photocatalytic sites.We herein report an ion-loading pyrolysis route to in-situ anchor Pd single atoms as well as twinned Pd nanoparticles on ultra-thin graphitic carbon nitride nanosheets(PdTP/Pd_(SA)-CN)for high-efficiency photoreduction of CO_(2).The anchored Pd twinned nanoparticles donate electrons to adjacent single Pd–N_(4) sites through the carbon nitride networks,and the optimized PdTP/Pd_(SA)-CN photocatalyst exhibits a CO evolution rate up to 46.5μmol g^(-1) h^(-1) with nearly 100%selectivity.As revealed by spectroscopic and theoretical analyses,the superior photocatalytic activity is attributed to the lowered desorption barrier of carbonyl species at electron-enriched Pd single atoms,together with the improved efficiencies of light-harvesting and charge separation/transport.This work has demonstrated the engineering of the electron density of single active sites with twinned metal nanoparticles assisted by strong electronic interaction with the support of the atomic metal,and unveiled the underlying mechanism for expedited photocatalytic efficiency.