SAPO-34 zeolite membranes show high efficiency for CO2/CH4 separation but suffer from the reduction of separation performance when exposed to humid atmosphere.In this work,n-dodecyltrimethoxysilane(DTMS)was used to mo...SAPO-34 zeolite membranes show high efficiency for CO2/CH4 separation but suffer from the reduction of separation performance when exposed to humid atmosphere.In this work,n-dodecyltrimethoxysilane(DTMS)was used to modify the hollow fibers supported SAPO-34 membranes to increase the external surface hydrophobicity and thus sustain their performance under moisture environment.The modified membranes were fully characterized.Their separation performance was extensively investigated in both dry and wet gaseous systems and compared with the un-modified ones.The un-modified SAPO-34 membrane exhibited a high separation selectivity of 160 and CO2 permeance of 1.18×10-6 mol·m-2·s-1·Pa-1 for separation of dry CO2/CH4 at 298 K.However,its separation selectivity declined to 0.9 and the CO2 permeance was only about 1.7×10-8 mol·m-2·s-1·Pa-1 for wet CO2/CH4 at same temperature.High temperature(e.g.353 K)could reduce the effect of moisture to improve SAPO-34 separation selectivity,but further increasing temperature(e.g.373 K)led to decrease in CO2/CH4 separation selectivity.A significant decrease of selectivity was observed at higher pressure drop.The modified SAPO-34 membrane showed decreased CO2 permeance but increased separation selectivity for dry CO2/CH4 gas mixture,and super performance for wet CO2/CH4 gas mixture due to the improved hydrophobicity of membrane surface.A separation selectivity of 65 and CO2 permeance of 4.73×10-8 mol·m-2·s-1·Pa-1 for wet CO2/CH4 mixture can be observed at 353 K with a pressure drop of 0.4 MPa.Furthermore,the modified membrane exhibited stable separation performance during the 120-hour test for wet CO2/CH4 mixture at 353 K.The hydrophobic modification paves a way for SAPO-34 membranes in real applications.展开更多
In this investigation, polymeric nanocomposite membranes(PNMs) were prepared via incorporating zinc oxide(ZnO) into poly(ether-block-amide)(PEBAX-1074) polymer matrix with different loadings. The neat membrane a...In this investigation, polymeric nanocomposite membranes(PNMs) were prepared via incorporating zinc oxide(ZnO) into poly(ether-block-amide)(PEBAX-1074) polymer matrix with different loadings. The neat membrane and nanocomposite membranes were prepared via solution casting and solution blending methods, respectively. The fabricated membranes were characterized by field emission scanning electron microscopy(FESEM) to survey cross-sectional morphologies and thermal gravimetric analysis(TGA)to study thermal stability. Fourier transform infrared(FT-IR) and X-ray diffraction(XRD) analyses were also employed to identify variations of the chemical bonds and crystal structure of the membranes, respectively. Permeation of pure gases, CO, CHand Nthrough the prepared neat and nanocomposite membranes was studied at pressures of 3–18 bar and temperature of 25 °C. The obtained results showed that the fabricated nanocomposite membranes exhibit better separation performance compared to the neat PEBAX membrane in terms of both permeability and selectivity. As an example, at temperature of 25 °C and pressure of 3 bar, COpermeability, ideal CO/CHand CO/Nselectivity values for the neat PEBAX membrane are 110.67 Barrer, 11.09 and 50.08, respectively, while those values are 152.27 Barrer,13.52 and 62.15 for PEBAX/ZnO nanocomposite membrane containing 8 wt% ZnO.展开更多
The present paper renders a modeling and a 2D numerical simulation for the removal of CO_2from CO_2/CH_4gaseous stream utilizing sodium hydroxide(NaOH),monoethanolamine(MEA)and triethanolamine(TEA)liquid absorbents in...The present paper renders a modeling and a 2D numerical simulation for the removal of CO_2from CO_2/CH_4gaseous stream utilizing sodium hydroxide(NaOH),monoethanolamine(MEA)and triethanolamine(TEA)liquid absorbents inside the hollow fiber membrane contactor.Counter-current arrangement of absorbing agents and CO_2/CH_4gaseous mixture flows are implemented in the modeling and numerical simulation.Non-wetting and partial wetting modes of operation are considered where in the partial wetting mode,CO_2/CH_4gaseous mixture and liquid absorbents fill the membrane pores.The deteriorated removal of CO_2in the partial wetting mode of operation is mainly due to the mass transfer resistance imposed by the liquid in the pores of membrane.The validation of numerical simulation is done based on the comparison of simulation results of CO_2removal using Na OH and experimental data under non-wetting mode of operation.The comparison illustrates a desirable agreement with an average deviation of less than 5%.According to the results,MEA provides higher efficiency for CO_2removal in comparison with the other liquid absorbents.The order for CO_2removal performance is MEAN Na OHN TEA.The influence of non-wetting and partial wetting modes of operation on CO_2removal are evaluated in this article as one of the novelties.Besides,the percentage of CO_2sequestration as a function of gas velocity for various percentages of membrane pores wetting ranging from 0(non-wetting mode of operation)to 100%(complete wetting mode of operation)is studied in this research paper,which can be proposed as the other novelty.The results indicate that increase in some operational parameters such as module length,membrane porosity and absorbents concentration encourage the removal percentage of CO_2from CO_2/CH_4gaseous mixture while increasing in membrane tortuosity,gas velocity and initial CO_2concentration has unfavorable influence on the separation efficiency of CO_2.展开更多
Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was deve...Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups.展开更多
During the 2nd Chinese Arctic Research Expedition, 20 pair of atmospheric samples were collected on the cruising route from Shanghai to Arctic Ocean using NOAA/ESRL flask sampling unit. Mean concentration of CO2 and C...During the 2nd Chinese Arctic Research Expedition, 20 pair of atmospheric samples were collected on the cruising route from Shanghai to Arctic Ocean using NOAA/ESRL flask sampling unit. Mean concentration of CO2 and CH4 were analyzed in different latitude zone from 30°N to 80°N and the distribution characteristics were studied. Mean concentration of CO2 decrease toward high latitude which indicates the uptake effect of CO2 by ocean. Coinciding with the CH4 global distribution character, mean CH4 concentration increase from 45°N to the North Pole region. Regional or local air mass may influence the greenhouse gas concentrations near seashore in the middle latitude (30°N-45°N).展开更多
Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based n...Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based nanoparticles were homogenously integrated within the polymer matrix,facilitating penetration of CO_2 through the membrane while acting as barrier for methane gas.The membrane containing 4.6 wt% fumed silica(FS)(PEBAX/4.6 wt%FS)exhibits astonishing selectivity results where binary gas mixture of CO_2/CH_4 was used as feed gas.As detected by gas chromatography,in the permeate side,data showed a significant increase of CO_2 permeance,while CH_4 transport through the mixed matrix membrane was not detectable.Moreover,PEBAX/4.6 wt%FS greatly exceeds the Robeson limit.According to data reported on CO_2/CH_4 gas pair separation in the literature,the results achieved in this work are beyond those data reported in the literature,particularly when PEBAX/4.6 wt%FS membrane was utilized.展开更多
Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,t...Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,those membranes are not strong enough mechanically and highly crystalline,which hinders their broader applications for separation membranes.In this review discussions are made,as much in detail as possible,on the strategies to improve gas separation performance of PEO-based membranes.Some of techniques such as synthesis of graft copolymers that contain PEO,cross-linking of polymers and blending with long chains polymers contributed significantly to improvement of membrane.Incorporation of ionic liquids/nanoparticles has also been found effective.However,surface modification of nanoparticles has been done chemically or physically to enhance their compatibility with polymer matrix.As a result of all such efforts,an excellent performance,i.e.,CO2 permeability up to 200 Barrer,CO2/N2 selectivity up to 200 and CO2/CH4 selectivity up to 70,could be achieved.Another method is to introduce functional groups into PEO-based polymers which boosted CO2 permeability up to 200 Barrer with CO2/CH4 selectivity between 40 and 50.The CO2 permeability of PEO-based membranes increases,without much change in selectivity,when the length of ethylene oxide is increased.展开更多
基金Supported by the National Natural Science Foundation of China(21490585,21776128)the“Six Top Talents”and“333 Talent Project”of Jiangsu Province,State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201602,ZK201719)Priority Academy Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘SAPO-34 zeolite membranes show high efficiency for CO2/CH4 separation but suffer from the reduction of separation performance when exposed to humid atmosphere.In this work,n-dodecyltrimethoxysilane(DTMS)was used to modify the hollow fibers supported SAPO-34 membranes to increase the external surface hydrophobicity and thus sustain their performance under moisture environment.The modified membranes were fully characterized.Their separation performance was extensively investigated in both dry and wet gaseous systems and compared with the un-modified ones.The un-modified SAPO-34 membrane exhibited a high separation selectivity of 160 and CO2 permeance of 1.18×10-6 mol·m-2·s-1·Pa-1 for separation of dry CO2/CH4 at 298 K.However,its separation selectivity declined to 0.9 and the CO2 permeance was only about 1.7×10-8 mol·m-2·s-1·Pa-1 for wet CO2/CH4 at same temperature.High temperature(e.g.353 K)could reduce the effect of moisture to improve SAPO-34 separation selectivity,but further increasing temperature(e.g.373 K)led to decrease in CO2/CH4 separation selectivity.A significant decrease of selectivity was observed at higher pressure drop.The modified SAPO-34 membrane showed decreased CO2 permeance but increased separation selectivity for dry CO2/CH4 gas mixture,and super performance for wet CO2/CH4 gas mixture due to the improved hydrophobicity of membrane surface.A separation selectivity of 65 and CO2 permeance of 4.73×10-8 mol·m-2·s-1·Pa-1 for wet CO2/CH4 mixture can be observed at 353 K with a pressure drop of 0.4 MPa.Furthermore,the modified membrane exhibited stable separation performance during the 120-hour test for wet CO2/CH4 mixture at 353 K.The hydrophobic modification paves a way for SAPO-34 membranes in real applications.
文摘In this investigation, polymeric nanocomposite membranes(PNMs) were prepared via incorporating zinc oxide(ZnO) into poly(ether-block-amide)(PEBAX-1074) polymer matrix with different loadings. The neat membrane and nanocomposite membranes were prepared via solution casting and solution blending methods, respectively. The fabricated membranes were characterized by field emission scanning electron microscopy(FESEM) to survey cross-sectional morphologies and thermal gravimetric analysis(TGA)to study thermal stability. Fourier transform infrared(FT-IR) and X-ray diffraction(XRD) analyses were also employed to identify variations of the chemical bonds and crystal structure of the membranes, respectively. Permeation of pure gases, CO, CHand Nthrough the prepared neat and nanocomposite membranes was studied at pressures of 3–18 bar and temperature of 25 °C. The obtained results showed that the fabricated nanocomposite membranes exhibit better separation performance compared to the neat PEBAX membrane in terms of both permeability and selectivity. As an example, at temperature of 25 °C and pressure of 3 bar, COpermeability, ideal CO/CHand CO/Nselectivity values for the neat PEBAX membrane are 110.67 Barrer, 11.09 and 50.08, respectively, while those values are 152.27 Barrer,13.52 and 62.15 for PEBAX/ZnO nanocomposite membrane containing 8 wt% ZnO.
文摘The present paper renders a modeling and a 2D numerical simulation for the removal of CO_2from CO_2/CH_4gaseous stream utilizing sodium hydroxide(NaOH),monoethanolamine(MEA)and triethanolamine(TEA)liquid absorbents inside the hollow fiber membrane contactor.Counter-current arrangement of absorbing agents and CO_2/CH_4gaseous mixture flows are implemented in the modeling and numerical simulation.Non-wetting and partial wetting modes of operation are considered where in the partial wetting mode,CO_2/CH_4gaseous mixture and liquid absorbents fill the membrane pores.The deteriorated removal of CO_2in the partial wetting mode of operation is mainly due to the mass transfer resistance imposed by the liquid in the pores of membrane.The validation of numerical simulation is done based on the comparison of simulation results of CO_2removal using Na OH and experimental data under non-wetting mode of operation.The comparison illustrates a desirable agreement with an average deviation of less than 5%.According to the results,MEA provides higher efficiency for CO_2removal in comparison with the other liquid absorbents.The order for CO_2removal performance is MEAN Na OHN TEA.The influence of non-wetting and partial wetting modes of operation on CO_2removal are evaluated in this article as one of the novelties.Besides,the percentage of CO_2sequestration as a function of gas velocity for various percentages of membrane pores wetting ranging from 0(non-wetting mode of operation)to 100%(complete wetting mode of operation)is studied in this research paper,which can be proposed as the other novelty.The results indicate that increase in some operational parameters such as module length,membrane porosity and absorbents concentration encourage the removal percentage of CO_2from CO_2/CH_4gaseous mixture while increasing in membrane tortuosity,gas velocity and initial CO_2concentration has unfavorable influence on the separation efficiency of CO_2.
基金Supported by the National Research Council of Science&Technology(NST)grant by the Korea government(MSIP)(No.CRC-15-07-KIER)
文摘Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups.
文摘During the 2nd Chinese Arctic Research Expedition, 20 pair of atmospheric samples were collected on the cruising route from Shanghai to Arctic Ocean using NOAA/ESRL flask sampling unit. Mean concentration of CO2 and CH4 were analyzed in different latitude zone from 30°N to 80°N and the distribution characteristics were studied. Mean concentration of CO2 decrease toward high latitude which indicates the uptake effect of CO2 by ocean. Coinciding with the CH4 global distribution character, mean CH4 concentration increase from 45°N to the North Pole region. Regional or local air mass may influence the greenhouse gas concentrations near seashore in the middle latitude (30°N-45°N).
基金financial support of Research Institute of Petroleum Industry
文摘Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based nanoparticles were homogenously integrated within the polymer matrix,facilitating penetration of CO_2 through the membrane while acting as barrier for methane gas.The membrane containing 4.6 wt% fumed silica(FS)(PEBAX/4.6 wt%FS)exhibits astonishing selectivity results where binary gas mixture of CO_2/CH_4 was used as feed gas.As detected by gas chromatography,in the permeate side,data showed a significant increase of CO_2 permeance,while CH_4 transport through the mixed matrix membrane was not detectable.Moreover,PEBAX/4.6 wt%FS greatly exceeds the Robeson limit.According to data reported on CO_2/CH_4 gas pair separation in the literature,the results achieved in this work are beyond those data reported in the literature,particularly when PEBAX/4.6 wt%FS membrane was utilized.
文摘Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,those membranes are not strong enough mechanically and highly crystalline,which hinders their broader applications for separation membranes.In this review discussions are made,as much in detail as possible,on the strategies to improve gas separation performance of PEO-based membranes.Some of techniques such as synthesis of graft copolymers that contain PEO,cross-linking of polymers and blending with long chains polymers contributed significantly to improvement of membrane.Incorporation of ionic liquids/nanoparticles has also been found effective.However,surface modification of nanoparticles has been done chemically or physically to enhance their compatibility with polymer matrix.As a result of all such efforts,an excellent performance,i.e.,CO2 permeability up to 200 Barrer,CO2/N2 selectivity up to 200 and CO2/CH4 selectivity up to 70,could be achieved.Another method is to introduce functional groups into PEO-based polymers which boosted CO2 permeability up to 200 Barrer with CO2/CH4 selectivity between 40 and 50.The CO2 permeability of PEO-based membranes increases,without much change in selectivity,when the length of ethylene oxide is increased.