根据南京CINRAD/SA天气雷达探测的江苏沿江地区阵风锋回波特征,对MIGFA(Machine Intelligence Gust Front Algorithm)阵风锋识别算法进行改进:在考虑平滑算法使用和低仰角数据融合的基础上,根据阵风锋回波特征,改进了0.5°反射率阵...根据南京CINRAD/SA天气雷达探测的江苏沿江地区阵风锋回波特征,对MIGFA(Machine Intelligence Gust Front Algorithm)阵风锋识别算法进行改进:在考虑平滑算法使用和低仰角数据融合的基础上,根据阵风锋回波特征,改进了0.5°反射率阵风锋细线函数模板,设计了较高仰角(1.5°/2.4°)反射率阵风锋细线函数模板,引入1.5°和2.4°双层反射率阵风锋细线函数模板替代原空间差分反射率函数模板。考虑阵风锋特征与距离测站的关系,设计了动态权重函数组合多组得分值,从而有效识别阵风锋回波。在此基础上通过弧度判断和阵风锋回波平坦度测试的方式,进一步降低虚警率。最后利用2009年6月14日南京雷达阵风锋个例进行效果识别,并采用临界成功指数对南京雷达120个阵风锋样本进行效果评估。结果表明:改进的MIGFA法识别效果良好,将临界成功指数从0.39提高至0.60,引入降低虚警率的做法使得虚假警报率从0.34降至0.16。展开更多
文摘根据南京CINRAD/SA天气雷达探测的江苏沿江地区阵风锋回波特征,对MIGFA(Machine Intelligence Gust Front Algorithm)阵风锋识别算法进行改进:在考虑平滑算法使用和低仰角数据融合的基础上,根据阵风锋回波特征,改进了0.5°反射率阵风锋细线函数模板,设计了较高仰角(1.5°/2.4°)反射率阵风锋细线函数模板,引入1.5°和2.4°双层反射率阵风锋细线函数模板替代原空间差分反射率函数模板。考虑阵风锋特征与距离测站的关系,设计了动态权重函数组合多组得分值,从而有效识别阵风锋回波。在此基础上通过弧度判断和阵风锋回波平坦度测试的方式,进一步降低虚警率。最后利用2009年6月14日南京雷达阵风锋个例进行效果识别,并采用临界成功指数对南京雷达120个阵风锋样本进行效果评估。结果表明:改进的MIGFA法识别效果良好,将临界成功指数从0.39提高至0.60,引入降低虚警率的做法使得虚假警报率从0.34降至0.16。