In this paper, the CE/SE method is developed to simulate the two- and three-dimensional flow-field of Pulse Detonation Engine (PDE). The conservation equations with stiff source terms for chemical reaction are solved ...In this paper, the CE/SE method is developed to simulate the two- and three-dimensional flow-field of Pulse Detonation Engine (PDE). The conservation equations with stiff source terms for chemical reaction are solved in two steps. The detailed analysis of computational results of a PDE with a single detonation tube and a PDE with five detonation tubes are given in this paper. Complex wave systems are observed inside and outside a PDE. For a PDE with 5 detonation tubes, there is a big bow shock produced from a number of little shocks near the open ends of tubes. A lot of vortexes interact with shocks and a large expansion wave propagates forward and backward with respect to the PDE in a semi-oval shape.展开更多
The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper,...The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper, the evolution of the detonation wave and the distribution of its physical parameters were analyzed. The numerical results show that the change of axial velocity of gas is the same as that of detonation pressure. The larger the liquid droplet radius is, the longer the time to get stable detonation wave is. The calculated results coincide with the experimented results better.展开更多
基金The project supported by the National Natural Science Foundation of China(59906005)the Teaching Research Award Program for Outstanding Young Teachers in High Education Institutions of MOE,China
文摘In this paper, the CE/SE method is developed to simulate the two- and three-dimensional flow-field of Pulse Detonation Engine (PDE). The conservation equations with stiff source terms for chemical reaction are solved in two steps. The detailed analysis of computational results of a PDE with a single detonation tube and a PDE with five detonation tubes are given in this paper. Complex wave systems are observed inside and outside a PDE. For a PDE with 5 detonation tubes, there is a big bow shock produced from a number of little shocks near the open ends of tubes. A lot of vortexes interact with shocks and a large expansion wave propagates forward and backward with respect to the PDE in a semi-oval shape.
基金Sponsored by the National Natural Science Foundation of China (10672080)
文摘The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper, the evolution of the detonation wave and the distribution of its physical parameters were analyzed. The numerical results show that the change of axial velocity of gas is the same as that of detonation pressure. The larger the liquid droplet radius is, the longer the time to get stable detonation wave is. The calculated results coincide with the experimented results better.