The Caudrey-Dodd-Gibbon-Kotera Sawada (CDGKS) equation has attracted many physicists and mathematicians. In this paper, based on the idea of variable-coefficient balancing-act method and the computerized .symbolic com...The Caudrey-Dodd-Gibbon-Kotera Sawada (CDGKS) equation has attracted many physicists and mathematicians. In this paper, based on the idea of variable-coefficient balancing-act method and the computerized .symbolic compu tation, some exact analytic solutions for the CDGKS equation have been obtained.展开更多
In this paper, through symbolic computations, we obtain two exact solitary wave solitons of the (2 + l)-dimensional variable-coefficient Caudrey-Dodd- Gibbon-Kotera-Sawada equation. We study basic properties of l-peri...In this paper, through symbolic computations, we obtain two exact solitary wave solitons of the (2 + l)-dimensional variable-coefficient Caudrey-Dodd- Gibbon-Kotera-Sawada equation. We study basic properties of l-periodic solitary wave solution and interactional properties of 2-periodic solitary wave solution by using asymptotic analysis.展开更多
基金This workis supported by the National Natural Science Foundation of China under Grant (60372095)by the science and technology development pro-gramof Beijing Municipal Commission of Education (KM200410772002)by the Beijing Excellent Talent Fund.
文摘The Caudrey-Dodd-Gibbon-Kotera Sawada (CDGKS) equation has attracted many physicists and mathematicians. In this paper, based on the idea of variable-coefficient balancing-act method and the computerized .symbolic compu tation, some exact analytic solutions for the CDGKS equation have been obtained.
基金Supported by the Natural Science Foundation of Inner Mongolia (2009 MS0108)the Natural Science Foundation(ZRYB08017)Initial Funding of Scientific Reserarch Project for Ph.D.of Inner Mongolia Normal University
文摘In this paper, through symbolic computations, we obtain two exact solitary wave solitons of the (2 + l)-dimensional variable-coefficient Caudrey-Dodd- Gibbon-Kotera-Sawada equation. We study basic properties of l-periodic solitary wave solution and interactional properties of 2-periodic solitary wave solution by using asymptotic analysis.