AIM: To investigate the effect of c9, t1l-conjugated linoleic acid (c9, t11-CLA) on the invasion of human gastric carcinoma cell line and its possible mechanism of preventing metastasis.METHODS: Using reconstituted ba...AIM: To investigate the effect of c9, t1l-conjugated linoleic acid (c9, t11-CLA) on the invasion of human gastric carcinoma cell line and its possible mechanism of preventing metastasis.METHODS: Using reconstituted basement membrane invasion, chemotaxis, adhesion, PAGE substrate zymography and RT-PCR assays, we analyzed the abilities of invasion,direct migration, adhesion of intracellular matrix, as well as the activity of type IV collagenase and expression of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 mRNA in SGC-7901 cells which were treated with gradually increased concentrations (25, 50, 100 and 200μmol/L) of c9,c11-CLA for 24 h.RESULTS: At the concentrations of 200μmol/L, 100μmol/L and 50μmol/L, c9,tll-CLA suppressed the invasion of SGC-7901 cells into the reconstituted basement membrane by 53.7 %, 40.9 % and 29.3 %, respectively, in comparison with the negative control. Only in the 200 μmol/L c9,tll-CLA group, the chemotaxis of SGC-7901 cells was inhibited by 16.0 % in comparision with the negative control. C9,tll-CLA also could inhibit the adhesion of SGC-7901 cells to laminin, fibronectin and Matrigel, increase the expression of TIMP-1 and TIMP-2 mRNA, and reduce type IV collegenase activities in the serum-free medium supernatant of SGC-7901 cells.CONCLUSION: c9,t11-C:LA can inhibit the invasion of SGC-7901 cells at multiple procedures in tumor metastasis cascade, which may be associated with the induction of TIMP-1 and TIMP-2 mRNA expression.展开更多
Hydrogenation modification is one of the most important ways to produce high-quality petroleum resin. The col- orless C9 petroleum resin (CgPR) was obtained by two-stage catalytic hydrogenation over NiWS/?-A1203 ca...Hydrogenation modification is one of the most important ways to produce high-quality petroleum resin. The col- orless C9 petroleum resin (CgPR) was obtained by two-stage catalytic hydrogenation over NiWS/?-A1203 catalyst and PdRu/ y-A1203 catalyst connected in series. Via the hydrogenation reaction, aromatic rings in C9PR were converted to alicyclic rings, and its color was reduced from Gardner color grade No. 11 to Gardner color grade No. 0. The optimum Ni/W atomic ratio was found to be close to 0.23, while the optimum Pd/Ru atomic ratio was close to 3.80. The TEM results showed that the morphology and size of sulfide or metal particles of the two kinds of catalysts remained almost unchanged after the reac- tion was carried our for 1 204 hours, attesting to their good catalytic stability.展开更多
采用两段加氢工艺对裂解C9进行了加氢处理,一段采用Ni系催化剂将易结焦的二烯烃、链烯基芳烃等热敏物质除去,并使部分单烯烃加氢饱和;二段采用CoMoNi系催化剂进行加氢脱硫同时将单烯烃加氢饱和。重点考查了反应温度、压力、氢油比、空...采用两段加氢工艺对裂解C9进行了加氢处理,一段采用Ni系催化剂将易结焦的二烯烃、链烯基芳烃等热敏物质除去,并使部分单烯烃加氢饱和;二段采用CoMoNi系催化剂进行加氢脱硫同时将单烯烃加氢饱和。重点考查了反应温度、压力、氢油比、空速对一段加氢效果的影响,并初步探讨了二段反应温度对加氢性能的影响,研究结果表明两段加氢后的产品溴值小于2.0 g Br/100 g,总硫小于1.0μg/g,胶质含量小于5mg/100 mL,可用于汽油调和组分或芳烃溶剂油。展开更多
Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reductio...Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reduction(TPR) method was used for hydrogenation of C9 petroleum resins. The effect of reaction conditions on catalytic performance was studied, and the results showed that the optimum reaction temperature, pressure and liquid hourly space velocity(LHSV) was 250 ℃, 6.0 MPa, and 1.0 h-1, respectively. The bromine numbers of hydrogenated products were maintained at low values(250 mg Br/100g) within 300h, showing the high activity and stability of Ni2P/SiO2 catalyst. The fresh and spent catalysts were characterized by X-ray diffraction(XRD), BET surface area(BET) analysis, scanning electron microscopy(SEM), transmission electron microscopy(TEM), Fourier transform infrared(FTIR) pyridine adsorption, and X-ray photoelectron spectroscopy(XPS). Compared with the traditional sulfurated-Ni W catalysts, Ni2P possessed globe-like structure instead of layered structure like the active phase of Ni WS, thereof exposing more active sites, which were responsible for the high activity of Ni2P/SiO2 catalyst. The stability of Ni2P/SiO2 catalyst was probably attributed to its high sulfur tolerance, antisintering, anti-coking and carbon-resistance ability. These properties might be further ascribed to the special Ni-P-S surface phase, high thermal stability of Ni2P nanoparticles and weak surface acidity for the Ni2P/SiO2 catalyst.展开更多
基金the National Natural Science Foundation of China, No.30070658
文摘AIM: To investigate the effect of c9, t1l-conjugated linoleic acid (c9, t11-CLA) on the invasion of human gastric carcinoma cell line and its possible mechanism of preventing metastasis.METHODS: Using reconstituted basement membrane invasion, chemotaxis, adhesion, PAGE substrate zymography and RT-PCR assays, we analyzed the abilities of invasion,direct migration, adhesion of intracellular matrix, as well as the activity of type IV collagenase and expression of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 mRNA in SGC-7901 cells which were treated with gradually increased concentrations (25, 50, 100 and 200μmol/L) of c9,c11-CLA for 24 h.RESULTS: At the concentrations of 200μmol/L, 100μmol/L and 50μmol/L, c9,tll-CLA suppressed the invasion of SGC-7901 cells into the reconstituted basement membrane by 53.7 %, 40.9 % and 29.3 %, respectively, in comparison with the negative control. Only in the 200 μmol/L c9,tll-CLA group, the chemotaxis of SGC-7901 cells was inhibited by 16.0 % in comparision with the negative control. C9,tll-CLA also could inhibit the adhesion of SGC-7901 cells to laminin, fibronectin and Matrigel, increase the expression of TIMP-1 and TIMP-2 mRNA, and reduce type IV collegenase activities in the serum-free medium supernatant of SGC-7901 cells.CONCLUSION: c9,t11-C:LA can inhibit the invasion of SGC-7901 cells at multiple procedures in tumor metastasis cascade, which may be associated with the induction of TIMP-1 and TIMP-2 mRNA expression.
基金financially supported by the Scientific Research Fund of Zhejiang Provincial Education Department (Y201018517)
文摘Hydrogenation modification is one of the most important ways to produce high-quality petroleum resin. The col- orless C9 petroleum resin (CgPR) was obtained by two-stage catalytic hydrogenation over NiWS/?-A1203 catalyst and PdRu/ y-A1203 catalyst connected in series. Via the hydrogenation reaction, aromatic rings in C9PR were converted to alicyclic rings, and its color was reduced from Gardner color grade No. 11 to Gardner color grade No. 0. The optimum Ni/W atomic ratio was found to be close to 0.23, while the optimum Pd/Ru atomic ratio was close to 3.80. The TEM results showed that the morphology and size of sulfide or metal particles of the two kinds of catalysts remained almost unchanged after the reac- tion was carried our for 1 204 hours, attesting to their good catalytic stability.
文摘采用两段加氢工艺对裂解C9进行了加氢处理,一段采用Ni系催化剂将易结焦的二烯烃、链烯基芳烃等热敏物质除去,并使部分单烯烃加氢饱和;二段采用CoMoNi系催化剂进行加氢脱硫同时将单烯烃加氢饱和。重点考查了反应温度、压力、氢油比、空速对一段加氢效果的影响,并初步探讨了二段反应温度对加氢性能的影响,研究结果表明两段加氢后的产品溴值小于2.0 g Br/100 g,总硫小于1.0μg/g,胶质含量小于5mg/100 mL,可用于汽油调和组分或芳烃溶剂油。
基金financially supported by the Scientific Research Fund of Zhejiang Provincial Education Department (Y201225114)the Natural Science Foundation of Zhejiang Province (LY13B030006)
文摘Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reduction(TPR) method was used for hydrogenation of C9 petroleum resins. The effect of reaction conditions on catalytic performance was studied, and the results showed that the optimum reaction temperature, pressure and liquid hourly space velocity(LHSV) was 250 ℃, 6.0 MPa, and 1.0 h-1, respectively. The bromine numbers of hydrogenated products were maintained at low values(250 mg Br/100g) within 300h, showing the high activity and stability of Ni2P/SiO2 catalyst. The fresh and spent catalysts were characterized by X-ray diffraction(XRD), BET surface area(BET) analysis, scanning electron microscopy(SEM), transmission electron microscopy(TEM), Fourier transform infrared(FTIR) pyridine adsorption, and X-ray photoelectron spectroscopy(XPS). Compared with the traditional sulfurated-Ni W catalysts, Ni2P possessed globe-like structure instead of layered structure like the active phase of Ni WS, thereof exposing more active sites, which were responsible for the high activity of Ni2P/SiO2 catalyst. The stability of Ni2P/SiO2 catalyst was probably attributed to its high sulfur tolerance, antisintering, anti-coking and carbon-resistance ability. These properties might be further ascribed to the special Ni-P-S surface phase, high thermal stability of Ni2P nanoparticles and weak surface acidity for the Ni2P/SiO2 catalyst.