Suzuki-Miyaura coupling reaction of N-protected 4-iodopheyl alanine isoxazoles with arylboronic acids,catalyzed by palladium,efficiently produce benzyl-N-(4-bipheyl)-2-(3-methyl-5(E)-2-aryl-1-ethenyl-4-isoxazolyl...Suzuki-Miyaura coupling reaction of N-protected 4-iodopheyl alanine isoxazoles with arylboronic acids,catalyzed by palladium,efficiently produce benzyl-N-(4-bipheyl)-2-(3-methyl-5(E)-2-aryl-1-ethenyl-4-isoxazolyl)-amino-2-oxoethyl)carba- mates in good yields.This process is first of its kind to construct carbon-carbon bond formation having biaryl motif on amino acid linked isoxazole moiety.展开更多
Henry reaction is one of the most classical reactions to construct synthetically useful product nitro alcohol, which as a privileged skeleton is widely distributed in various pharmaceuticals. This review summarizes th...Henry reaction is one of the most classical reactions to construct synthetically useful product nitro alcohol, which as a privileged skeleton is widely distributed in various pharmaceuticals. This review summarizes the recent progress of copper-catalyzed asymmetric Henry reaction from 2011 to 2016. The significant progress that has been made in this area will be highlighted and some of challenges that the author believes may be hindering further progress will be revealed.展开更多
Ethanol is a considerable platform molecule in biomass conversion,which could be acquired in quantity through acetone-butanol-ethanol(ABE)fermentation.People have been working on the upgrading of ethanol to value adde...Ethanol is a considerable platform molecule in biomass conversion,which could be acquired in quantity through acetone-butanol-ethanol(ABE)fermentation.People have been working on the upgrading of ethanol to value added chemicals for decades.In the meantime,1-butanol and a series of value added products have been selectively generated through C–C bond coupling.In this mini-review,we focus on the recent advances in selective C–C bond formation over balanced Lewis acid-base catalysts such as modified metal oxide,mixed metal oxide,hydroxyapatite and zeolite confined transition metal oxide catalysts.Among them,Pd-MgAlO_x and Sr-based hydroxyapatite exhibit>70%1-butanol selectivity,while Zn——xZr_yO_z and Ta-Si BEA zeolite achieve>80%of isobutene and butadiene selectivity respectively.The mechanism and reaction pathway of C–C bond formation in each reaction system are described in detail.The correlation between C–C bond coupling and the acidity/basicity of the Lewis acid-base pairs from the surface of the catalysts are also discussed.展开更多
文摘Suzuki-Miyaura coupling reaction of N-protected 4-iodopheyl alanine isoxazoles with arylboronic acids,catalyzed by palladium,efficiently produce benzyl-N-(4-bipheyl)-2-(3-methyl-5(E)-2-aryl-1-ethenyl-4-isoxazolyl)-amino-2-oxoethyl)carba- mates in good yields.This process is first of its kind to construct carbon-carbon bond formation having biaryl motif on amino acid linked isoxazole moiety.
基金Project supported by the Henan Province Epidemic Prevention and Control Emergency Research Project(No.221111311400)the Young Backbone Teachers Fund of Henan Province(No.2021GGJS012)the National Natural Science Foundation of China(No.82130103)。
基金supported by the National High Technology Research and Development Program of China (863 Program, 2012AA02A700)the National Natural Science Foundation of China (21221062)~~
基金the National Natural Science Foundation of China (Nos. 2127222, 21432009, 21472177, J1310010)Chinese Academy of Sciences(No. XDB20000000)
文摘Henry reaction is one of the most classical reactions to construct synthetically useful product nitro alcohol, which as a privileged skeleton is widely distributed in various pharmaceuticals. This review summarizes the recent progress of copper-catalyzed asymmetric Henry reaction from 2011 to 2016. The significant progress that has been made in this area will be highlighted and some of challenges that the author believes may be hindering further progress will be revealed.
基金supported by the “111 Project” of China (B18030) and Nankai University
文摘Ethanol is a considerable platform molecule in biomass conversion,which could be acquired in quantity through acetone-butanol-ethanol(ABE)fermentation.People have been working on the upgrading of ethanol to value added chemicals for decades.In the meantime,1-butanol and a series of value added products have been selectively generated through C–C bond coupling.In this mini-review,we focus on the recent advances in selective C–C bond formation over balanced Lewis acid-base catalysts such as modified metal oxide,mixed metal oxide,hydroxyapatite and zeolite confined transition metal oxide catalysts.Among them,Pd-MgAlO_x and Sr-based hydroxyapatite exhibit>70%1-butanol selectivity,while Zn——xZr_yO_z and Ta-Si BEA zeolite achieve>80%of isobutene and butadiene selectivity respectively.The mechanism and reaction pathway of C–C bond formation in each reaction system are described in detail.The correlation between C–C bond coupling and the acidity/basicity of the Lewis acid-base pairs from the surface of the catalysts are also discussed.