芥菜起源于中国,属于十字花科芸薹属作物,现已成为我国南方重要特色蔬菜,主要包括叶用芥菜、茎用芥菜、根用芥菜以及薹用芥菜等,在全国各地均有栽培。由于芥菜是常自花授粉作物,花器官小,细胞质雄性不育(cytoplasmic male sterility,CMS...芥菜起源于中国,属于十字花科芸薹属作物,现已成为我国南方重要特色蔬菜,主要包括叶用芥菜、茎用芥菜、根用芥菜以及薹用芥菜等,在全国各地均有栽培。由于芥菜是常自花授粉作物,花器官小,细胞质雄性不育(cytoplasmic male sterility,CMS)是芥菜杂种优势利用的重要途径。目前研究得比较多的芥菜细胞质雄性不育系有hau CMS、ogu CMS和oxa CMS等。本文主要综述了国内外学者对芥菜雄性不育与杂种优势利用的研究进展,并展望了芥菜杂种优势利用的方向和目标,为芥菜类蔬菜杂种优势利用提供理论基础和材料来源。展开更多
The importance of zinc (Zn) as a micronutrient essential for plant growth and development is becoming increasingly apparent. Much of the world’s soil is Zn-deficient, and soil-based Zn deficiency is often accompani...The importance of zinc (Zn) as a micronutrient essential for plant growth and development is becoming increasingly apparent. Much of the world’s soil is Zn-deficient, and soil-based Zn deficiency is often accompanied by Zn deficiency in human populations. MicroRNAs (miRNAs) play important roles in the regulation of plant gene expression at the level of translation. Many miRNAs involved in the modulation of heavy metal toxicity responses in plants have been identiifed;however, the role of miRNAs in the plant Zn deifciency response is almost completely unknown. Using high-throughput Solexa sequencing, we identiifed several miRNAs that respond to Zn deifciency in Brassica juncea roots. At least 21 conserved candidate miRNA families, and 101 individual members within those families, were identiifed in both the control and the Zn-deifcient B. juncea roots. Among this, 15 miRNAs from 9 miRNA families were differentially expressed in the control and Zn-deifcient plants. Of the 15 differentially expressed miRNAs, 13 were up-regulated in the Zn-deifcient B. juncea roots, and only two, miR399b and miR845a, were down-regulated. Bioinformatics analysis indicated that these miRNAs were involved in modulating phytohormone response, plant growth and development, and abiotic stress responses in B. juncea roots. These data help to lay the foundation for further understanding of miRNA function in the regulation of the plant Zn deifciency response and its impact on plant growth and development.展开更多
This paper reviews research advances in cytogenetics and germplasm innovation in Brassica allopolyploids, particularly oilseed rape(Brassica napus), in China. Three naturally evolved Brassica allotetraploid species ...This paper reviews research advances in cytogenetics and germplasm innovation in Brassica allopolyploids, particularly oilseed rape(Brassica napus), in China. Three naturally evolved Brassica allotetraploid species are cytologically stable but tend to preferentially lose several chromosomes from one subgenome when induced by alien chromosome elimination. A-subgenome is extracted from B. napus, and the ancestral Brassica rapa was restituted after the total loss of C-subgenome chromosomes. Genome-wide genetic and epigenetic alterations were observed in both natural and synthetic Brassica allotetraploids. B. napus was subjected to extensive interspecific hybridization with landraces of B. rapa and Brassica juncea, which exhibit abundant phenotype variations, to widen the genetic diversity in breeding and select numerous elite germplasm resources and cultivars; these cultivars include the representative Zhongyou 821, which also parented numerous other varieties. Novel B. napus genotypes were obtained using Brassica trigenomic hybrids and allohexaploids(2 n=54, AABBCC) by combining subgenomes from extant allotetraploids and diploids as bridge. Alien additions, substitutions, and translocations of the B. napus genome were developed by intergeneric/intertribal sexual and somatic hybridizations with several crucifers. Furthermore, mitochondrial DNA recombination promoted the production of novel cytoplasmic male sterile lines.展开更多
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KSCX2EW-Q-25)the National Natural Sciences Foundation of China(31170228+4 种基金31272239)the Key Project of State Key Laboratory of Desert and Oasis EcologyXinjiang Institute of Ecology and Geography of Chinese Academy of SciencesHebei Province Natural Sciences Foundation for Distinguished Young ScientistsChina (C2013503042)
文摘The importance of zinc (Zn) as a micronutrient essential for plant growth and development is becoming increasingly apparent. Much of the world’s soil is Zn-deficient, and soil-based Zn deficiency is often accompanied by Zn deficiency in human populations. MicroRNAs (miRNAs) play important roles in the regulation of plant gene expression at the level of translation. Many miRNAs involved in the modulation of heavy metal toxicity responses in plants have been identiifed;however, the role of miRNAs in the plant Zn deifciency response is almost completely unknown. Using high-throughput Solexa sequencing, we identiifed several miRNAs that respond to Zn deifciency in Brassica juncea roots. At least 21 conserved candidate miRNA families, and 101 individual members within those families, were identiifed in both the control and the Zn-deifcient B. juncea roots. Among this, 15 miRNAs from 9 miRNA families were differentially expressed in the control and Zn-deifcient plants. Of the 15 differentially expressed miRNAs, 13 were up-regulated in the Zn-deifcient B. juncea roots, and only two, miR399b and miR845a, were down-regulated. Bioinformatics analysis indicated that these miRNAs were involved in modulating phytohormone response, plant growth and development, and abiotic stress responses in B. juncea roots. These data help to lay the foundation for further understanding of miRNA function in the regulation of the plant Zn deifciency response and its impact on plant growth and development.
基金supported by the National Key Research and Development Program of China (2016YFD0102000,2016YFD0101000)the National Natural Science Foundation of China (31330057)Yangzhou University for Excellent Talent Support Program,China
文摘This paper reviews research advances in cytogenetics and germplasm innovation in Brassica allopolyploids, particularly oilseed rape(Brassica napus), in China. Three naturally evolved Brassica allotetraploid species are cytologically stable but tend to preferentially lose several chromosomes from one subgenome when induced by alien chromosome elimination. A-subgenome is extracted from B. napus, and the ancestral Brassica rapa was restituted after the total loss of C-subgenome chromosomes. Genome-wide genetic and epigenetic alterations were observed in both natural and synthetic Brassica allotetraploids. B. napus was subjected to extensive interspecific hybridization with landraces of B. rapa and Brassica juncea, which exhibit abundant phenotype variations, to widen the genetic diversity in breeding and select numerous elite germplasm resources and cultivars; these cultivars include the representative Zhongyou 821, which also parented numerous other varieties. Novel B. napus genotypes were obtained using Brassica trigenomic hybrids and allohexaploids(2 n=54, AABBCC) by combining subgenomes from extant allotetraploids and diploids as bridge. Alien additions, substitutions, and translocations of the B. napus genome were developed by intergeneric/intertribal sexual and somatic hybridizations with several crucifers. Furthermore, mitochondrial DNA recombination promoted the production of novel cytoplasmic male sterile lines.