A concept of microstructure design for materials or materials microstructure engineering is proposed. The argument was suggested based on literature review and. some our new research work on second phase strengthening...A concept of microstructure design for materials or materials microstructure engineering is proposed. The argument was suggested based on literature review and. some our new research work on second phase strengthening mechanisms and mechanical property modeling of a particulate reinforced metal matrix composite. Due to development of computer technology, it is possible now for us to establish the relationship between microstructures and properties systematically and quantitatively by analytical and numerical modeling in the research scope of computerization materials. Discussions and examples on intellectual optimization of microstructure are presented on two aspects: grain boundary engineering and optimal geometry of particulate reinforcements in two-phase materials.展开更多
The cloud boundary network environment is characterized by a passive defense strategy,discrete defense actions,and delayed defense feedback in the face of network attacks,ignoring the influence of the external environ...The cloud boundary network environment is characterized by a passive defense strategy,discrete defense actions,and delayed defense feedback in the face of network attacks,ignoring the influence of the external environment on defense decisions,thus resulting in poor defense effectiveness.Therefore,this paper proposes a cloud boundary network active defense model and decision method based on the reinforcement learning of intelligent agent,designs the network structure of the intelligent agent attack and defense game,and depicts the attack and defense game process of cloud boundary network;constructs the observation space and action space of reinforcement learning of intelligent agent in the non-complete information environment,and portrays the interaction process between intelligent agent and environment;establishes the reward mechanism based on the attack and defense gain,and encourage intelligent agents to learn more effective defense strategies.the designed active defense decision intelligent agent based on deep reinforcement learning can solve the problems of border dynamics,interaction lag,and control dispersion in the defense decision process of cloud boundary networks,and improve the autonomy and continuity of defense decisions.展开更多
Based on the global reanalysis data of the National Centers for Environmental Prediction(NCEP)/National Center for Atmospheric Research,the surface meteorological observation data,sounding data and satellite observati...Based on the global reanalysis data of the National Centers for Environmental Prediction(NCEP)/National Center for Atmospheric Research,the surface meteorological observation data,sounding data and satellite observation data,this paper comprehensively analyzes the evolution process and formation mechanism of a persistent severe dense fog process occurred on February 15–17,2015 in Yancheng,eastern China.Through the numerical simulation experiment of Weather Research and Forecast(WRF)model,we further analyze the impact of sea-land breeze on the formation and burst reinforcement of fog.Results show that the precipitation caused by the southwesterly airflow in front of the upper-level trough and the low-pressure inverted trough are conducive to the formation of early rain fog,while the nighttime clear radiance under the control of surface cold high and the infiltration of weak cold advection are conducive to the formation and development of later radiation-advection fog.The WRF model simulates the fog evolution process,which is basically consistent with the actual fog area,and the simulation results are credible to a certain extent.The simulation results show that the establishment of sea breeze has an advection cooling effect on the near surface layer,which is conducive to the formation and development of the inversion layer on the near surface,providing stable stratification conditions for the formation and burst reinforcement of fog.On one hand,the strengthening of sea breeze circulation can continuously transport water vapor to the study area.On the other,the occurrence of ultra-low level jet is favorable for the accumulation of low-level water vapor.At the same time,the inversion intensity further strengthens,which is in favor of the burst reinforcement and long-term maintenance of fog.展开更多
This paper, based on the strain softening character of rock, and the de formation feature of roadway with badly damaged surrounding rock and adopting the ideal elastoplastic softening model, derives the formula for ca...This paper, based on the strain softening character of rock, and the de formation feature of roadway with badly damaged surrounding rock and adopting the ideal elastoplastic softening model, derives the formula for calculating the supporting resistance for the roadway. It is pointed out that controlling the rheid speed of the rock in the plastic softening area is critical and that the combined supporting, i. e. combining surrounding rock internal rein forcement with external supporting f is the reasonahle supporting to this kiud of roadways. The theory and practice introduced in this paper are of universal significance for harnessing the roadway with badly damaged surrounding rock.展开更多
基金the National Natural Science Foundation of China for the financial support by the grant 50171018 and 59771015, and Education Ministry of China for an outstanding teacher research fund to this study. Some student work
文摘A concept of microstructure design for materials or materials microstructure engineering is proposed. The argument was suggested based on literature review and. some our new research work on second phase strengthening mechanisms and mechanical property modeling of a particulate reinforced metal matrix composite. Due to development of computer technology, it is possible now for us to establish the relationship between microstructures and properties systematically and quantitatively by analytical and numerical modeling in the research scope of computerization materials. Discussions and examples on intellectual optimization of microstructure are presented on two aspects: grain boundary engineering and optimal geometry of particulate reinforcements in two-phase materials.
基金supported in part by the National Natural Science Foundation of China(62106053)the Guangxi Natural Science Foundation(2020GXNSFBA159042)+2 种基金Innovation Project of Guangxi Graduate Education(YCSW2023478)the Guangxi Education Department Program(2021KY0347)the Doctoral Fund of Guangxi University of Science and Technology(XiaoKe Bo19Z33)。
文摘The cloud boundary network environment is characterized by a passive defense strategy,discrete defense actions,and delayed defense feedback in the face of network attacks,ignoring the influence of the external environment on defense decisions,thus resulting in poor defense effectiveness.Therefore,this paper proposes a cloud boundary network active defense model and decision method based on the reinforcement learning of intelligent agent,designs the network structure of the intelligent agent attack and defense game,and depicts the attack and defense game process of cloud boundary network;constructs the observation space and action space of reinforcement learning of intelligent agent in the non-complete information environment,and portrays the interaction process between intelligent agent and environment;establishes the reward mechanism based on the attack and defense gain,and encourage intelligent agents to learn more effective defense strategies.the designed active defense decision intelligent agent based on deep reinforcement learning can solve the problems of border dynamics,interaction lag,and control dispersion in the defense decision process of cloud boundary networks,and improve the autonomy and continuity of defense decisions.
基金supported by the National Natural Science Foundation of China(Grant Nos.42075063&42075066)the Open Project of State Key Laboratory of Severe Weather(Grant No.2021LASW-A07)+3 种基金the Jiangsu Meteorological Youth Fund Project(Grant No.KQ202215)the Special Fund for Basic Scientific Research Business of China Academy of Meteorological Sciences(Grant No.2022Y025)the Bei Ji Ge Open Research Fund(Grant No.BJG202307)the Science and Technology Project of Yancheng Meteorological Administration(Grant No.YQK2021016)。
文摘Based on the global reanalysis data of the National Centers for Environmental Prediction(NCEP)/National Center for Atmospheric Research,the surface meteorological observation data,sounding data and satellite observation data,this paper comprehensively analyzes the evolution process and formation mechanism of a persistent severe dense fog process occurred on February 15–17,2015 in Yancheng,eastern China.Through the numerical simulation experiment of Weather Research and Forecast(WRF)model,we further analyze the impact of sea-land breeze on the formation and burst reinforcement of fog.Results show that the precipitation caused by the southwesterly airflow in front of the upper-level trough and the low-pressure inverted trough are conducive to the formation of early rain fog,while the nighttime clear radiance under the control of surface cold high and the infiltration of weak cold advection are conducive to the formation and development of later radiation-advection fog.The WRF model simulates the fog evolution process,which is basically consistent with the actual fog area,and the simulation results are credible to a certain extent.The simulation results show that the establishment of sea breeze has an advection cooling effect on the near surface layer,which is conducive to the formation and development of the inversion layer on the near surface,providing stable stratification conditions for the formation and burst reinforcement of fog.On one hand,the strengthening of sea breeze circulation can continuously transport water vapor to the study area.On the other,the occurrence of ultra-low level jet is favorable for the accumulation of low-level water vapor.At the same time,the inversion intensity further strengthens,which is in favor of the burst reinforcement and long-term maintenance of fog.
文摘This paper, based on the strain softening character of rock, and the de formation feature of roadway with badly damaged surrounding rock and adopting the ideal elastoplastic softening model, derives the formula for calculating the supporting resistance for the roadway. It is pointed out that controlling the rheid speed of the rock in the plastic softening area is critical and that the combined supporting, i. e. combining surrounding rock internal rein forcement with external supporting f is the reasonahle supporting to this kiud of roadways. The theory and practice introduced in this paper are of universal significance for harnessing the roadway with badly damaged surrounding rock.