期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Homoclinic Bifurcations in Symmetric Unfoldings of a Singularity with Three-fold Zero Eigenvalue 被引量:1
1
作者 JianHuaSUN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第1期65-80,共16页
In this paper we study the singularity at the origin with three–fold zeroeigenvalue for symmetric vector fields with nilpotent linear part and 3–jet C~∞–equivalent toy(partial deriv)/(partial deriv) + z(partial de... In this paper we study the singularity at the origin with three–fold zeroeigenvalue for symmetric vector fields with nilpotent linear part and 3–jet C~∞–equivalent toy(partial deriv)/(partial deriv) + z(partial deriv)/(partial deriv)y + ax^2y (partialderiv)/(partial deriv)/z with a ≠ 0. We first obtain several subfamilies of the symmetric versalunfoldings of this singularity by using the normal form and blow–up methods under some conditions,and derive the local and global bifurcation behavior, then prove analytically the existence of theSilnikov homoclinic bifurcation for some subfamilies of the symmetric versal unfoldings of thissingularity, by using the generalized Melnikov methods of a homoclinic orbit to a hyperbolic ornon–hyperbolic equilibrium in a highdimensional space. 展开更多
关键词 SINGULARITY Symmetric unfolding Homoclinic orbit Silnikov bifurcation Normal form blowup Generalized Mel'nikov methods
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部