离心式压缩机叶片作为压缩机内最重要部件,长期承受周期性振动和流动诱使激励的作用。而叶片的故障将对压缩机的运行以及现场安全可靠性有严重的影响,因此如何有效地识别压缩机叶片裂纹早期故障显得尤为重要。由于叶片裂纹故障属于低频...离心式压缩机叶片作为压缩机内最重要部件,长期承受周期性振动和流动诱使激励的作用。而叶片的故障将对压缩机的运行以及现场安全可靠性有严重的影响,因此如何有效地识别压缩机叶片裂纹早期故障显得尤为重要。由于叶片裂纹故障属于低频微弱故障,通常被调制到叶片通过频率处,但是故障频率难以识别,清晰度较低。首先在叶片通过频率处进行信号滤波,然后应用Woods-Saxon and Gaussian Potential随机共振模型对特征频率进行加强,从而得到叶片裂纹故障频率。通过在叶片裂纹附近安装压力脉动传感器,利用压力脉动信号对叶片裂纹信息进行监测。实现模拟叶片裂纹的信号测试,验证了WSG随机共振模型在叶片裂纹早期故障识别中的有效性以及可靠性。同时通过应变试验进行验证此方法的有效性。展开更多
为阐明测试单元环境下加速任务试车(AMT)过程中叶片早期起裂的物理原因,对裂纹叶片断口进行了检查和分析,并采用LPTi s XactLIFETM系统对叶片进行了深入的分析.结果表明:叶片叶型发生了过量的蠕变损伤,此过量的蠕变损伤导致了叶片的过...为阐明测试单元环境下加速任务试车(AMT)过程中叶片早期起裂的物理原因,对裂纹叶片断口进行了检查和分析,并采用LPTi s XactLIFETM系统对叶片进行了深入的分析.结果表明:叶片叶型发生了过量的蠕变损伤,此过量的蠕变损伤导致了叶片的过量延伸以及叶型特别是在尾缘区域的转扭,此行为可能造成AMT疲劳循环条件下缘板以下的叶片伸根部位疲劳裂纹的形核与生长.因此,过量的蠕变被认为是整个裂纹形核过程的主要驱动力.展开更多
文摘离心式压缩机叶片作为压缩机内最重要部件,长期承受周期性振动和流动诱使激励的作用。而叶片的故障将对压缩机的运行以及现场安全可靠性有严重的影响,因此如何有效地识别压缩机叶片裂纹早期故障显得尤为重要。由于叶片裂纹故障属于低频微弱故障,通常被调制到叶片通过频率处,但是故障频率难以识别,清晰度较低。首先在叶片通过频率处进行信号滤波,然后应用Woods-Saxon and Gaussian Potential随机共振模型对特征频率进行加强,从而得到叶片裂纹故障频率。通过在叶片裂纹附近安装压力脉动传感器,利用压力脉动信号对叶片裂纹信息进行监测。实现模拟叶片裂纹的信号测试,验证了WSG随机共振模型在叶片裂纹早期故障识别中的有效性以及可靠性。同时通过应变试验进行验证此方法的有效性。
文摘为阐明测试单元环境下加速任务试车(AMT)过程中叶片早期起裂的物理原因,对裂纹叶片断口进行了检查和分析,并采用LPTi s XactLIFETM系统对叶片进行了深入的分析.结果表明:叶片叶型发生了过量的蠕变损伤,此过量的蠕变损伤导致了叶片的过量延伸以及叶型特别是在尾缘区域的转扭,此行为可能造成AMT疲劳循环条件下缘板以下的叶片伸根部位疲劳裂纹的形核与生长.因此,过量的蠕变被认为是整个裂纹形核过程的主要驱动力.