Major histocompatibility complex (MHC) tetramer technology is critical for characterization of antigen-specific T cells. In the present study we reported the successful generation of HLA-A*0203 tetramer loaded with...Major histocompatibility complex (MHC) tetramer technology is critical for characterization of antigen-specific T cells. In the present study we reported the successful generation of HLA-A*0203 tetramer loaded with Epstein- Barr virus EBNA3596-604 peptide (SVRDRLARL, SVR). Prokaryotic expression vector for the ectodomain of the heavy chain of HLA-A*0203 fused with a BirA substrate peptide (HLA-A*0203-BSP) was constructed and the expression conditions of the fusion protein in Escherichia coli (E. coli) were optimized. The fusion protein was highly expressed in inclusion bodies within E. coil It was then refolded in the presence of 132-microglobulin and SVR peptide to form a soluble HLA-A*0203-SVR monomer. After biotinylation with BirA, the monomer was purified by anion-exchange chromatography and its purity was up to 95%. The tetramer was then formulated by mixing the biotinylated monomer with streptavidin-PE at a ratio of 4:1. Flow cytometry showed that this tetramer could specifically react with antigen-specific CD8^+ T cells, indicating that it was biologically functional. These results provide a foundation for further characterization of antigen-specific CD8^+ T cells from HLA-A*0203 subjects.展开更多
Objective Alzheimer's disease (AD) is one of the major disorders worldwide. Recent research suggests that the amyloid-β precursor protein intracellular domain (AICD) is a potential contributor to AD development ...Objective Alzheimer's disease (AD) is one of the major disorders worldwide. Recent research suggests that the amyloid-β precursor protein intracellular domain (AICD) is a potential contributor to AD development and progression. The small AICD is rapidly degraded after processing from the full-length protein. The present study aimed to apply a highly efficient biotinylation approach in vitro to study AICD-associated complexes in neurocytes. Methods By coexpressing Escherichia coli biotin ligase with biotinyl-tagged AICD in the SH-SY5Y neuronal cell line, the effects of AICD overexpression on cell proliferation and apoptosis were analyzed. Besides, AICD-associated nuclear transcriptional complexes were purified and then examined by mass spectrometry. Results Our data showed that AICD overexpression not only affected cell proliferation but also led to apoptosis in differentiated SH-SY5Y cells. Moreover, biotinylation allowed single-step purification of biotinylated AICD-associated complexes from total nuclear extract via high-affinity biotin-streptavidin binding. Following this by mass spectrometry, we identified physically associated proteins, some reported previously and other novel binding partners, CUX1 and SPT5. Conclusion Based on these results, a map of the AICD-associated nuclear interactome was depicted. Specifically, AICD can activate CUX1 transcriptional activity, which may be associated with AICD-dependent neuronal cell death. This work helps to understand the AICD-associated biological events in AD progression and provides novel insights into the development of AD.展开更多
Quantum dots(QDs)-based single particle analysis technique enables real-time tracking of the viral infection in live cells with great sensitivity over a long period of time.The porcine reproductive and respiratory syn...Quantum dots(QDs)-based single particle analysis technique enables real-time tracking of the viral infection in live cells with great sensitivity over a long period of time.The porcine reproductive and respiratory syndrome virus(PRRSV)is a small virus with the virion size of 40–60 nm which causes great economic losses to the swine industry worldwide.A clear understanding of the viral infection mechanism is essential for the development of effective antiviral strategies.In this study,we labeled the PRRSV with QDs using the streptavidin–biotin labeling system and monitored the viral infection process in live cells.Our results indicated that the labeling method had negligible effect on viral infectivity.We also observed that prior to the entry,PRRSV vibrated on the plasma membrane,and entered the cells via endosome mediated cell entry pathway.Viruses moved in a slow–fast–slow oscillatory movement pattern and finally accumulated in a perinuclear region of the cell.Our results also showed that once inside the cell,PRRSV moved along the microtubule,microfilament and vimentin cytoskeletal elements.During the transport process,virus particles also made contacts with non-muscle myosin heavy chainⅡ-A(NMHCⅡ-A),visualized as small spheres in cytoplasm.This study can facilitate the application of QDs in virus infection imaging,especially the smaller-sized viruses and provide some novel and important insights into PRRSV infection mechanism.展开更多
文摘Major histocompatibility complex (MHC) tetramer technology is critical for characterization of antigen-specific T cells. In the present study we reported the successful generation of HLA-A*0203 tetramer loaded with Epstein- Barr virus EBNA3596-604 peptide (SVRDRLARL, SVR). Prokaryotic expression vector for the ectodomain of the heavy chain of HLA-A*0203 fused with a BirA substrate peptide (HLA-A*0203-BSP) was constructed and the expression conditions of the fusion protein in Escherichia coli (E. coli) were optimized. The fusion protein was highly expressed in inclusion bodies within E. coil It was then refolded in the presence of 132-microglobulin and SVR peptide to form a soluble HLA-A*0203-SVR monomer. After biotinylation with BirA, the monomer was purified by anion-exchange chromatography and its purity was up to 95%. The tetramer was then formulated by mixing the biotinylated monomer with streptavidin-PE at a ratio of 4:1. Flow cytometry showed that this tetramer could specifically react with antigen-specific CD8^+ T cells, indicating that it was biologically functional. These results provide a foundation for further characterization of antigen-specific CD8^+ T cells from HLA-A*0203 subjects.
基金supported by grants from the National Natural Science Foundation of China (30800178, 30973094)the Natural Science Foundation for Young Scientists of Shanxi Province, China(2009021045)
文摘Objective Alzheimer's disease (AD) is one of the major disorders worldwide. Recent research suggests that the amyloid-β precursor protein intracellular domain (AICD) is a potential contributor to AD development and progression. The small AICD is rapidly degraded after processing from the full-length protein. The present study aimed to apply a highly efficient biotinylation approach in vitro to study AICD-associated complexes in neurocytes. Methods By coexpressing Escherichia coli biotin ligase with biotinyl-tagged AICD in the SH-SY5Y neuronal cell line, the effects of AICD overexpression on cell proliferation and apoptosis were analyzed. Besides, AICD-associated nuclear transcriptional complexes were purified and then examined by mass spectrometry. Results Our data showed that AICD overexpression not only affected cell proliferation but also led to apoptosis in differentiated SH-SY5Y cells. Moreover, biotinylation allowed single-step purification of biotinylated AICD-associated complexes from total nuclear extract via high-affinity biotin-streptavidin binding. Following this by mass spectrometry, we identified physically associated proteins, some reported previously and other novel binding partners, CUX1 and SPT5. Conclusion Based on these results, a map of the AICD-associated nuclear interactome was depicted. Specifically, AICD can activate CUX1 transcriptional activity, which may be associated with AICD-dependent neuronal cell death. This work helps to understand the AICD-associated biological events in AD progression and provides novel insights into the development of AD.
基金support from the National Natural Science Foundation of China(Grant Nos.31570151 and 31490601)the Program for Science and Technology Innovation Talents in Universities of Henan Province(Grant No.17HASTIT039)+1 种基金the Key Scientific Research Project of Henan Province Higher Education(16A180044)the Open Research Fund Program of the State Key Laboratory of Virology of China(Grant No.2017KF005)。
文摘Quantum dots(QDs)-based single particle analysis technique enables real-time tracking of the viral infection in live cells with great sensitivity over a long period of time.The porcine reproductive and respiratory syndrome virus(PRRSV)is a small virus with the virion size of 40–60 nm which causes great economic losses to the swine industry worldwide.A clear understanding of the viral infection mechanism is essential for the development of effective antiviral strategies.In this study,we labeled the PRRSV with QDs using the streptavidin–biotin labeling system and monitored the viral infection process in live cells.Our results indicated that the labeling method had negligible effect on viral infectivity.We also observed that prior to the entry,PRRSV vibrated on the plasma membrane,and entered the cells via endosome mediated cell entry pathway.Viruses moved in a slow–fast–slow oscillatory movement pattern and finally accumulated in a perinuclear region of the cell.Our results also showed that once inside the cell,PRRSV moved along the microtubule,microfilament and vimentin cytoskeletal elements.During the transport process,virus particles also made contacts with non-muscle myosin heavy chainⅡ-A(NMHCⅡ-A),visualized as small spheres in cytoplasm.This study can facilitate the application of QDs in virus infection imaging,especially the smaller-sized viruses and provide some novel and important insights into PRRSV infection mechanism.