以Navier-Stokes方程作为波浪控制方程,并采用VOF(Volume of Fluid)法进行自由表面追踪来准确模拟海洋表面波浪运动,建立了波浪-海床-桩基动力问题的数值模型来模拟波浪对桩基和海床的作用.把海床视为多孔介质,以Biot动力理论为基础,考...以Navier-Stokes方程作为波浪控制方程,并采用VOF(Volume of Fluid)法进行自由表面追踪来准确模拟海洋表面波浪运动,建立了波浪-海床-桩基动力问题的数值模型来模拟波浪对桩基和海床的作用.把海床视为多孔介质,以Biot动力理论为基础,考虑土体骨架的加速度,并用孔隙水位移的速度场(位移-孔隙水压力动态模型)来模拟海床土体动态响应的过程.在模型验证的基础上,分析了水深对桩身弯矩、水平位移的影响,以及波高和海床渗透系数对桩周孔隙水压力的影响,并且对不同渗透系数时桩周土体的液化特性进行了讨论.展开更多
An analytical solution for the three-dimensional scattering and diffraction of plane P-waves by a hemispherical alluvial valley with saturated soil deposits is developed by employing Fourier-Bessel series expansion te...An analytical solution for the three-dimensional scattering and diffraction of plane P-waves by a hemispherical alluvial valley with saturated soil deposits is developed by employing Fourier-Bessel series expansion technique. Unlike previous studies, in which the saturated soil deposits were simulated with the single-phase elastic theory, in this paper, they are simulated with Biot's dynamic theory for saturated porous media, and the half space is assumed as a single-phase elastic medium. The effects of the dimensionless frequency, the incidence angle of P-wave and the porosity of soil deposits on the surface displacement magnifications of the hemispherical alluvial valley are investigated. Numerical results show that the existence of a saturated hemispherical alluvial valley has much influence on the surface displacement magnifications. It is more reasonable to simulate soil deposits with Biot's dynamic theory when evaluating the displacement responses of a hemispherical alluvial valley with an incidence of P-waves.展开更多
Abstract An analytical solution to the three-dimen-sional scattering and diffraction of plane SV-waves by a saturated hemispherical alluvial valley in elastic half-space is obtained by using Fourier-Bessel series expa...Abstract An analytical solution to the three-dimen-sional scattering and diffraction of plane SV-waves by a saturated hemispherical alluvial valley in elastic half-space is obtained by using Fourier-Bessel series expan-sion technique. The hemispherical alluvial valley with saturated soil deposits is simulated with Biot's dynamic theory for saturated porous media. The following conclusions based on numerical results can be drawn: (1) there are a significant differences in the seismic response simulation between the previous single-phase models and the present two-phase model; (2) the nor-malized displacements on the free surface of the alluvial valley depend mainly on the incident wave angles, the dimensionless frequency of the incident SV waves and the porosity of sediments; (3) with the increase of the incident angle, the displacement distributions become more complicated; and the displacements on the free surface of the alluvial valley increase as the porosity of sediments increases.展开更多
文摘以Navier-Stokes方程作为波浪控制方程,并采用VOF(Volume of Fluid)法进行自由表面追踪来准确模拟海洋表面波浪运动,建立了波浪-海床-桩基动力问题的数值模型来模拟波浪对桩基和海床的作用.把海床视为多孔介质,以Biot动力理论为基础,考虑土体骨架的加速度,并用孔隙水位移的速度场(位移-孔隙水压力动态模型)来模拟海床土体动态响应的过程.在模型验证的基础上,分析了水深对桩身弯矩、水平位移的影响,以及波高和海床渗透系数对桩周孔隙水压力的影响,并且对不同渗透系数时桩周土体的液化特性进行了讨论.
基金Project supported by the National Natural Science Foundation of China (No. 50478062) and Natural Science Foundation of Beijing (No. 8052015).
文摘An analytical solution for the three-dimensional scattering and diffraction of plane P-waves by a hemispherical alluvial valley with saturated soil deposits is developed by employing Fourier-Bessel series expansion technique. Unlike previous studies, in which the saturated soil deposits were simulated with the single-phase elastic theory, in this paper, they are simulated with Biot's dynamic theory for saturated porous media, and the half space is assumed as a single-phase elastic medium. The effects of the dimensionless frequency, the incidence angle of P-wave and the porosity of soil deposits on the surface displacement magnifications of the hemispherical alluvial valley are investigated. Numerical results show that the existence of a saturated hemispherical alluvial valley has much influence on the surface displacement magnifications. It is more reasonable to simulate soil deposits with Biot's dynamic theory when evaluating the displacement responses of a hemispherical alluvial valley with an incidence of P-waves.
基金The project was supported by the National Natural Science Foundation of China (50478062 and 10532070)Open Fund at the Key Laboratory of Urban Security and Disaster Engineering (Beijing University of Technology)Chinese Ministry of Education.
文摘Abstract An analytical solution to the three-dimen-sional scattering and diffraction of plane SV-waves by a saturated hemispherical alluvial valley in elastic half-space is obtained by using Fourier-Bessel series expan-sion technique. The hemispherical alluvial valley with saturated soil deposits is simulated with Biot's dynamic theory for saturated porous media. The following conclusions based on numerical results can be drawn: (1) there are a significant differences in the seismic response simulation between the previous single-phase models and the present two-phase model; (2) the nor-malized displacements on the free surface of the alluvial valley depend mainly on the incident wave angles, the dimensionless frequency of the incident SV waves and the porosity of sediments; (3) with the increase of the incident angle, the displacement distributions become more complicated; and the displacements on the free surface of the alluvial valley increase as the porosity of sediments increases.