Generally, materials with high biocompatibility are more appropriate for bone and tissue transplant applications, due to their higher effectiveness in the healing process and infection problems. This study presents th...Generally, materials with high biocompatibility are more appropriate for bone and tissue transplant applications, due to their higher effectiveness in the healing process and infection problems. This study presents the effects of laser surface texturing on the surface topography properties, roughness, and wettability of thin titanium sheets, which consequently enhance the biocompatibility of this material. Creating line patterns across the surfaces, the titanium samples are prepared using variety of laser parameters. The apatite inducing ability of each sample is tested through the use of simulated body fluid (SBF). The final biocompatibility level of titanium samples is analyzed through wettability, surface angle measurements, and average surface temperature profile. Overall, the effects of laser parameter, pulse numbers, upon the biocompatibility of titanium are thoroughly examined, with results indicating that a scanning speed of 100 μm/ms results in desirable bone type apatite inducing abilities across the surface of treated titanium sheets.展开更多
There is an increasing interest in the development of magnesium alloys both for industrial and biomedical applications. Industrial interest in magnesium alloys is based on strong demand of weight reduction of transpor...There is an increasing interest in the development of magnesium alloys both for industrial and biomedical applications. Industrial interest in magnesium alloys is based on strong demand of weight reduction of transportation vehicles for better fuel efficiency, so higher strength, and better ductility and corrosion resistance are required. Nevertheless, biomedical magnesium alloys require appropriate mechanical properties, suitable degradation rate in physiological environment, and what is most important, biosafety to human body. Rather than simply apply commercial magnesium alloys to biomedical field, new alloys should be designed from the point of view of nutriology and toxicology. This article provides a review of state-of-the-art of magnesium alloy implants and devices for orthopedic, cardiovascular and tissue engineering applications. Advances in new alloy design, novel structure design and surface modification are overviewed. The factors that influence the corrosion behavior of magnesium alloys are discussed and the strategy in the future development of biomedical magnesium alloys is proposed.展开更多
文摘Generally, materials with high biocompatibility are more appropriate for bone and tissue transplant applications, due to their higher effectiveness in the healing process and infection problems. This study presents the effects of laser surface texturing on the surface topography properties, roughness, and wettability of thin titanium sheets, which consequently enhance the biocompatibility of this material. Creating line patterns across the surfaces, the titanium samples are prepared using variety of laser parameters. The apatite inducing ability of each sample is tested through the use of simulated body fluid (SBF). The final biocompatibility level of titanium samples is analyzed through wettability, surface angle measurements, and average surface temperature profile. Overall, the effects of laser parameter, pulse numbers, upon the biocompatibility of titanium are thoroughly examined, with results indicating that a scanning speed of 100 μm/ms results in desirable bone type apatite inducing abilities across the surface of treated titanium sheets.
基金supported by the National Basic Research Program of China(973 Program)(Nos.2012CB619102 and 2012CB619100)the National Science Fund for Distinguished Young Scholars(No.51225101)+4 种基金the National Natural Science Foundation of China(No.31170909)the Research Fund for the Doctoral Program of Higher Education(No.20100001110011) the Natural Science Foundation of Heilongjiang Province(No. ZD201012)the Project for Supervisor of Excellent Doctoral Dissertation of Beijing(No.20121000101)the Guangdong Province Innovation R&D Team Project(No.201001 C0104669453)
文摘There is an increasing interest in the development of magnesium alloys both for industrial and biomedical applications. Industrial interest in magnesium alloys is based on strong demand of weight reduction of transportation vehicles for better fuel efficiency, so higher strength, and better ductility and corrosion resistance are required. Nevertheless, biomedical magnesium alloys require appropriate mechanical properties, suitable degradation rate in physiological environment, and what is most important, biosafety to human body. Rather than simply apply commercial magnesium alloys to biomedical field, new alloys should be designed from the point of view of nutriology and toxicology. This article provides a review of state-of-the-art of magnesium alloy implants and devices for orthopedic, cardiovascular and tissue engineering applications. Advances in new alloy design, novel structure design and surface modification are overviewed. The factors that influence the corrosion behavior of magnesium alloys are discussed and the strategy in the future development of biomedical magnesium alloys is proposed.