This paper presents the design and development of a starfish-like soft robot with flexible rays and the implementation of multi-gait locomotion using Shape Memory Alloy (SMA) actuators. The design principle was insp...This paper presents the design and development of a starfish-like soft robot with flexible rays and the implementation of multi-gait locomotion using Shape Memory Alloy (SMA) actuators. The design principle was inspired by the starfish, which possesses a remarkable symmetrical structure and soft internal skeleton. A soft robot body was constructed by using 3D printing technology. A kinematic model of the SMA spring was built and developed for motion control according to displacement and force requirements. The locomotion inspired from starfish was applied to the implementation of the multi-ray robot through the flexible actuation induced multi-gait movements in various environments. By virtue of the proposed ray control patterns in gait transition, the soft robot was able to cross over an obstacle approximately twice of its body height. Results also showed that the speed of the soft robot was 6.5 times faster on sand than on a clammy rough terrain. These experiments demonstrated that the bionic soft robot with flexible rays actuated by SMAs and multi-gait locomotion in proposed patterns can perform successfully and smoothly in various terrains.展开更多
This paper proposed a novel humanoid robot eye, which is driven by six Pneumatic Artificial Muscles (PAMs) and rotates with 3 Degree of Freedom (DOF). The design of the mechanism and motion type of the robot eye a...This paper proposed a novel humanoid robot eye, which is driven by six Pneumatic Artificial Muscles (PAMs) and rotates with 3 Degree of Freedom (DOF). The design of the mechanism and motion type of the robot eye are inspired by that of human eyes. The model of humanoid robot eye is established as a parallel mechanism, and the inverse-kinematic problem of this flexible tendons driving parallel system is solved by the analytical geometry method. As an extension, the simulation result for saccadic movement is presented under three conditions. The design and kinematic analysis of the prototype could be a sig- nificant step towards the goal of building an autonomous humanoid robot eye with the movement and especially the visual functions similar to that of human.展开更多
Nature is an information sourcebook of behaviour, function, colour and shape which can inspire visual design and invention. Studying the form and functional characteristics of a natural object can provide inspiration ...Nature is an information sourcebook of behaviour, function, colour and shape which can inspire visual design and invention. Studying the form and functional characteristics of a natural object can provide inspiration for product design and help to improve the marketability of manufactured products. The inspiration can be triggered either by direct observation or captured by three-dimensional (3D) digitising techniques to obtain superficial information (geometry and colour). An art designer often creates a concept in the form of a two-dimensional (2D) sketch while engineering methods lead to a point cloud in 3D. Each has its limitations in that the art designer commonly lacks the knowledge to build a final product from a 2D sketch and the engi- neering designer's 3D point clouds may not be very beautiful. We propose a method for Product Design from Nature (PDN), coupling aesthetic intent and geometrical characteristics, exploring the interactions between designers and nature's systems in PDN. We believe that this approach would considerably reduce the lead time and cost of product design from nature.展开更多
This study presented a graphene platelet/silicone rubber (GPL/SR) composite as a drag reduction material, inspired by the boundary heating drag reduction mechanism of dolphin skin. Graphene was added as a thermally ...This study presented a graphene platelet/silicone rubber (GPL/SR) composite as a drag reduction material, inspired by the boundary heating drag reduction mechanism of dolphin skin. Graphene was added as a thermally conductive filler at weight fractions of 0.17 wt%, 0.33 wt% and 0.67 wt% to pristine silicone rubber (PSR). Tests of the thermal conductivity and tensile properties showed that the thermal conductivity of all three GPL/SR materials of 0.17 wt%, 0.33 wt% and 0.67 wt% graphene were 20%, 40% and 50% higher than that of the P SR, respectively, and the elastic modulus of the 0.17 wt% GPL/SR materials was lowest. Droplet velocity testing, which can reflect the drag reduction mechanism of the heating boundary controlled by the GPL/SR composite, was performed between 0.33 wt% GPL/SR, which typically exhibits good mechanical properties and thermal conductivity performance, and the PSR. The results showed that on the 0.33 wt% GPL/SR, the droplet velocity was higher and the rolling angle was lower, implying that the GPL/SR composite had a drag-reducing function. In terms of the drag reduction mechanism, the heat conductivity performance of the GPL/SR accelerated the heat transfer between the GPL/SR composite surface and the droplet. The forces between the molecules decreased and the droplet dynamic viscosity was reduced. The drag of a sliding water droplet was proportional to the dynamic viscosity, which resulted in drag reduction. The application of GPL/SR material to the control fluid medium should have important value for fluid machinery.展开更多
This paper aims to enhance the compression capacity of underwater cylindrical shells by adopting the corrugated sandwich structure of cuttlebone.The cuttlebone suffers uniaxial external compression,while underwater cy...This paper aims to enhance the compression capacity of underwater cylindrical shells by adopting the corrugated sandwich structure of cuttlebone.The cuttlebone suffers uniaxial external compression,while underwater cylindrical shells are in a biaxial compressive stress state.To suit the biaxial compressive stress state,a novel bidirectional corrugated sandwich structure is proposed to improve the bearing capacity of cylindrical shells.The static and buckling analysis for the sandwich shell and the unstiffened cylindrical shell with the same volume-weight ratio are studied by numerical simulation.It is indicated that the proposed sandwich shell can effectively reduce the ratio between circumferential and axial stress from 2 to 1.25 and improve the critical buckling load by about 1.63 times.Numerical simulation shows that optimizing and adjusting the structural parameters could significantly improve the advantage of the sandwich shell.Then,the hydrostatic pressure tests for shell models fabricated by 3D printing are carried out.According to the experimental results,the overall failure position of the sandwich shell is at the center part of the sandwich shell.It has been found the average critical load of the proposed sandwich shell models exceeds two times that of the unstiffened shell models.Hence,the proposed bio-inspired bidirectional corrugated sandwich structure can significantly enhance the pressure resistance capability of cylindrical shells.展开更多
Bio-inspiration is a starting point from which to design engineering products by learning the secrets of living creatures. We present the design, analysis, and experimental results of a robotic platform inspired by th...Bio-inspiration is a starting point from which to design engineering products by learning the secrets of living creatures. We present the design, analysis, and experimental results of a robotic platform inspired by the basilisk lizard, which is well known for its ability to run on water surface. The goal is to develop a robotic platform for amphibious locomotion on ground and water using a single configuration. A tripod gait is achieved with a hexapedal configuration and four-bar-based repeated motion of the legs. The hexapedal configuration is empirically proven to have an advantage in terms of rolling stability on water. On ground, the tripod gait can satisfy the requirements of static stability to make the center of gravity and center of pressure occur at the same position. The footpad design was determined based on an empirical study of the rolling stability and lifting force. The theoretical background and experimental results are presented to validate the ability of the proposed design to run on water and on the ground.展开更多
Biomimetics provides guidance to design and synthesize advanced catalysts for oxygen reduction reaction in microbial fuel cells(MFCs).Herein,jellyfish-inspired Fe clusters on carbon nanotubes connected with CuNC(Fe@CN...Biomimetics provides guidance to design and synthesize advanced catalysts for oxygen reduction reaction in microbial fuel cells(MFCs).Herein,jellyfish-inspired Fe clusters on carbon nanotubes connected with CuNC(Fe@CNT@CuNC)were designed and prepared by using zeolitic imidazolate framework(ZIF)-8 precursors to imitate the organic texture and function of jellyfish.The antibacterial effect of Cu^(+)ions depressed the growth of cathode biofilm to ensure rapid mass transport.Fe clusters and CuNC connected by CNTs accelerated the electron transfer from Fe to CuNC.The optimization of oxygen adsorption was caused by electron redistribution between sites of Fe and Cu.Jellyfish-like catalysts achieved a half-wave potential of 0.86 V and onset potential of 0.95 V vs.reversible hydrogen electrode(RHE).MFCs gained the maximum power density of 1600 mW·m^(-2) after 500 h measurement.This work provides insights into the special design of advanced catalysts based on bio-inspiration and biomimetics.展开更多
Flapping-wing rotor(FWR)is an innovative bio-inspired micro aerial vehicle capable of vertical take-off and landing.This unique design combines active flapping motion and passive wing rotation around a vertical centra...Flapping-wing rotor(FWR)is an innovative bio-inspired micro aerial vehicle capable of vertical take-off and landing.This unique design combines active flapping motion and passive wing rotation around a vertical central shaft to enhance aerodynamic performance.The research on FWR,though relatively new,has contributed to 6%of core journal publications in the micro aerial vehicle field over the past two decades.This paper presents the first comprehensive review of FWR,analysing the current state of the art,key advances,challenges,and future research directions.The review highlights FWR’s distinctive kinematics and aerodynamic superiority compared to traditional flapping wings,fixed wings,and rotary wings,discussing recent breakthroughs in efficient,passive wing pitching and asymmetric stroke amplitude for lift enhancement.Recent experiments and remote-controlled take-off and hovering tests of single and dual-motor FWR models have showcased their effectiveness.The review compares FWR flight performance with well-developed insect-like flapping-wing micro aerial vehicles as the technology readiness level progresses from laboratory to outdoor flight testing,advancing from the initial flight of a 2.6 g prototype to the current free flight of a 60-gram model.The review also presents ongoing research in bionic flexible wing structures,flight stability and control,and transitioning between hovering and cruise flight modes for an FWR,setting the stage for potential applications.展开更多
Thermal-aware routing protocols in WBANs consider temperature factors in the routing process for preventing overheating of the tissues surrounding the sensor nodes.However,providing an energy-efficient and thermal-awa...Thermal-aware routing protocols in WBANs consider temperature factors in the routing process for preventing overheating of the tissues surrounding the sensor nodes.However,providing an energy-efficient and thermal-aware routing in WBANs is a challenging issue.To deal with this problem,this article presents a novel temperature-aware routing protocol that applies Mamdani-based Fuzzy Logic Controllers(FLCs)for selecting the next forwarding node in routing data packets.These FLCs apply five important input factors such as the priority of the packet,and sensor node's remaining energy,temperature,distance,and link path loss.Also,a new hybrid version of the Marine Predator Algorithm(MPA),named MPAOA is presented by combining the exploration and exploitation phases of the MPA and Arithmetic Optimization Algorithm(AOA).This algorithm is effectively applied for selecting the best possible set of fuzzy rules for FLCs and tuning their fuzzy sets.Extensive experiments conducted in the Castalia simulator exhibit that the proposed temperature and priority-aware routing scheme can outperform other well-known routing schemes such as LATOR,TTRP,TAEO,ATAR,and EOCC-TARA in terms of metrics such as sensor nodes lifetime,the average temperature of the sensor nodes,and the percentage of the packets routed through non-overheated paths.Besides,it is shown that the MPAOA outperforms other algorithms such as Bat Algorithm(BA),Genetic Algorithm(GA),AOA,and MPA regarding the specified metrics.展开更多
The increasing demand for energy absorbent structures,paired with the need for more efficient use of materials in a wide range of engineering fields,has led to an extensive range of designs in the porous forms of sand...The increasing demand for energy absorbent structures,paired with the need for more efficient use of materials in a wide range of engineering fields,has led to an extensive range of designs in the porous forms of sandwiches,honeycomb,and foams.To achieve an even better performance,an ingenious solution is to learn how biological structures adjust their configurations to absorb energy without catastrophic failure.In this study,we have attempted to blend the shape freedom,offered by additive manufacturing techniques,with the biomimetic approach,to propose new lattice structures for energy absorbent applications.To this aim we have combined multiple bio-inspirational sources for the design of optimized configurations under compressive loads.Periodic lattice structures are fabricated based on the designed unit cell geometries and studied using experimental and computational strategies.The individual effect of each bio-inspired feature has been evaluated on the energy absorbance performance of the designed structure.Based on the design parameters of the lattices,a tuning between the strength and energy absorption could be obtained,paving the way for transition within a wide range of real-life applicative scenarios.展开更多
Based on a bionic concept and combing air-cushion techniques and track driving mechanisms, a novel semi-floating hybrid concept vehicle is proposed to meet the transportation requirements on soft terrain. First, the v...Based on a bionic concept and combing air-cushion techniques and track driving mechanisms, a novel semi-floating hybrid concept vehicle is proposed to meet the transportation requirements on soft terrain. First, the vehicle scheme and its improved duel-spring flexible suspension design are described. Then, its fuel consumption model is proposed accordingly with respect to two vehicle operating parameters. Aiming at minimizing the fuel consumption, two Genetic Algorithms (GAs) are designed and implemented. For the initial one (GA-1), despite getting an acceptable result, there still existed some problems in its optimiza- tion process. Based on an analysis of the defects of GA-1, an improved algorithm GA-2 was developed whose effectiveness and stability were embodied in the optimization process and results. The proposed design scheme and optimization approaches can provide valuable references for this new kind of vehicle with industry, military or scientific exploitations, etc. promising applications in the areas of agriculture, petroleum industry, military or scientific explaitations, etc.展开更多
An insect is an excellent biological object for the bio-inspirations to design and develop a MAV. This paper presents the simulation study of the flight characteristics of the deployable hindwings of beetle, Dorcustit...An insect is an excellent biological object for the bio-inspirations to design and develop a MAV. This paper presents the simulation study of the flight characteristics of the deployable hindwings of beetle, Dorcustitanus platymelus. A 3D geometric model of the beetle was obtained using a 3D laser scanning technique. By studying its hindwings and flight mechanism, the mathematical model of the flapping motion of its hindwings was analyzed. Then a simulation analysis was carried out to analyze and evaluate the flapping flying aerodynamic characteristics. After that, the flow of blood in the hindwing veins was studied through simulation to determine the maximum pressure on a vein surface and the minimum blood flow in flight. A number of interesting bio-inspirations were obtained. It is believed that these findings can be used for the design and development of a MAV with similar flying capabilities to a natural beetle.展开更多
Robotics is one area of research in which bio-inspiration is an effective way to design a system by investigating the working principles of nature. Recently, tails have received interest in robotics to increase stabil...Robotics is one area of research in which bio-inspiration is an effective way to design a system by investigating the working principles of nature. Recently, tails have received interest in robotics to increase stability and maneuverability. In this study, we investigated the effectiveness of a static tail for bio-inspired water-running locomotion. The tail was added to increase the stability in the rolling and yawing directions based on the hydrodynamic force from interaction between the tail and the water. The drag coefficient in the interaction is not easy to calculate analytically, so experimental studies were done for various static tail shapes. Five different shapes and compliances in two directions were considered for experimental design candidates. The result was applied to design a stable amphibious robot that can run on ground and water surfaces.展开更多
The current work is oriented toward the development of a novel biologically inspired bat aerial robot with morphing wings. Based on the flight characteristics data of natural bats(Eptesicus fuscus), a novel four degre...The current work is oriented toward the development of a novel biologically inspired bat aerial robot with morphing wings. Based on the flight characteristics data of natural bats(Eptesicus fuscus), a novel four degrees of freedom robotic bat wing was developed to emulate the movements of bat wing. The design, fabrication, programing and wind tunnel experiments of the robot bat wing are described in this paper. Based on this robotic wing, the influence of flap amplitude, wind speed, flight frequency, downstroke ratio and stroke plane angle as well as the contributions of flap, elbow, sweep and wrist motions on the aerodynamic force and mechanical power were studied and analyzed. Results of wind tunnel experiments validated that higher lift would bring greater power consumption, and the flap motion would generate the most force and need more energy expenditure compared with other motions of bat. The experimental results suggest that the flap and fold motions are indispensable to make a robotic bat wing that has a better flight performance. This study provides some implications and a better understanding for the future robotic bat.展开更多
This paper presents our efforts to explain why mammals have large thigh muscles while insects have small ones. After a discussion of this observation a definition of body foot ratio is defined which describes how anim...This paper presents our efforts to explain why mammals have large thigh muscles while insects have small ones. After a discussion of this observation a definition of body foot ratio is defined which describes how animals stand and how their legs are arranged. To investigate the mechanics, we present a closed optimum solution of the body foot ratio for a 2D two-leg walking machine. A multi-walker is used as a case for 3D general analysis, and the numerical simulation is presented. Both 2D and 3D case studies can explain the above observations of mammals and insects. These findings can also be used as a guide for the design of man-made limbed machines.展开更多
Natural composites have inspired the fabrication of various biomimetic composites that have achieved enhancement on certain mechanical performance. Herein, a facial approach enabled by recent advances in polyimine che...Natural composites have inspired the fabrication of various biomimetic composites that have achieved enhancement on certain mechanical performance. Herein, a facial approach enabled by recent advances in polyimine chemistry has been developed to fabricate bio-inspired hard-soft-integrated copolymers from two polyimines (i.e. PI-H and PI-S) with hardness differential. Subsequent evaluations of multiple mechanical properties on the bio-inspired copolymers with PI-S contents of full-range variability (0 wt%-100 wt%) have revealed extremal transitions for friction coefficients, impact strengths and tensile moduli. More interestingly, the minimum points of friction coefficients show a deformation-resisting response toward the change of applied loads, but not for the altered sliding speeds, suggesting a more significant role of load in determining the optimal anti-friction composition of the hard-soft integrated copolymers. These trends have been further corroborated by scanning electron microscopy of the worn specimens. Together these results have demonstrated that full-range extremal tran- sitions exist on multiple mechanical properties for hard-soft-integrated copolymers, providing valuable insights to the design and fabrication of composite polymers for many applications. The polyimine-based approach outlined here also affords a convenient method to tune the ratio of two components in the copolymers within the full range of 0 wt%-100 wt%, enabling quick integration with high content variability.展开更多
介绍了爬壁动物的运动附着与仿生。动物用来实现在壁面上附着的器官主要有足爪、光滑爪垫和刚毛爪垫。在粗糙表面上动物使用足爪附着,基于机械内锁合的附着机制。在相对光滑的表面上,动物则使用光滑足垫或刚毛足垫实现附着。光滑足垫是...介绍了爬壁动物的运动附着与仿生。动物用来实现在壁面上附着的器官主要有足爪、光滑爪垫和刚毛爪垫。在粗糙表面上动物使用足爪附着,基于机械内锁合的附着机制。在相对光滑的表面上,动物则使用光滑足垫或刚毛足垫实现附着。光滑足垫是基于毛细吸附的附着机制,称为湿黏附;刚毛足垫主要是基于van der Waals力的附着机制,称为干黏附。爬壁机器人主要有生物机器人和仿生爬壁机器人两种,都是基于爬壁动物的附着机制的仿生应用。展开更多
基金Acknowledgment The authors would like to acknowledge the support of the National Natural Science Foundation of China (Grants. 51105349, 61375095, 51275501). We are grateful to Fei Li and Chunshan Liu for their assistance in the experiments.
文摘This paper presents the design and development of a starfish-like soft robot with flexible rays and the implementation of multi-gait locomotion using Shape Memory Alloy (SMA) actuators. The design principle was inspired by the starfish, which possesses a remarkable symmetrical structure and soft internal skeleton. A soft robot body was constructed by using 3D printing technology. A kinematic model of the SMA spring was built and developed for motion control according to displacement and force requirements. The locomotion inspired from starfish was applied to the implementation of the multi-ray robot through the flexible actuation induced multi-gait movements in various environments. By virtue of the proposed ray control patterns in gait transition, the soft robot was able to cross over an obstacle approximately twice of its body height. Results also showed that the speed of the soft robot was 6.5 times faster on sand than on a clammy rough terrain. These experiments demonstrated that the bionic soft robot with flexible rays actuated by SMAs and multi-gait locomotion in proposed patterns can perform successfully and smoothly in various terrains.
基金the National Natural Science Foundation of China (Project no. 50875240)the Program for New Century Excellent Talents in University, Ministry of Education, P. R. China (Grant no.NCET-04-0545)
文摘This paper proposed a novel humanoid robot eye, which is driven by six Pneumatic Artificial Muscles (PAMs) and rotates with 3 Degree of Freedom (DOF). The design of the mechanism and motion type of the robot eye are inspired by that of human eyes. The model of humanoid robot eye is established as a parallel mechanism, and the inverse-kinematic problem of this flexible tendons driving parallel system is solved by the analytical geometry method. As an extension, the simulation result for saccadic movement is presented under three conditions. The design and kinematic analysis of the prototype could be a sig- nificant step towards the goal of building an autonomous humanoid robot eye with the movement and especially the visual functions similar to that of human.
文摘Nature is an information sourcebook of behaviour, function, colour and shape which can inspire visual design and invention. Studying the form and functional characteristics of a natural object can provide inspiration for product design and help to improve the marketability of manufactured products. The inspiration can be triggered either by direct observation or captured by three-dimensional (3D) digitising techniques to obtain superficial information (geometry and colour). An art designer often creates a concept in the form of a two-dimensional (2D) sketch while engineering methods lead to a point cloud in 3D. Each has its limitations in that the art designer commonly lacks the knowledge to build a final product from a 2D sketch and the engi- neering designer's 3D point clouds may not be very beautiful. We propose a method for Product Design from Nature (PDN), coupling aesthetic intent and geometrical characteristics, exploring the interactions between designers and nature's systems in PDN. We believe that this approach would considerably reduce the lead time and cost of product design from nature.
基金The authors are grateful for grants received from the National Natural Science Foundation of China (Grant No. 51475203), the high-tech industrialization demonstration projects of Jilin province (Grant No. 20140307030GX), and 111 project.
文摘This study presented a graphene platelet/silicone rubber (GPL/SR) composite as a drag reduction material, inspired by the boundary heating drag reduction mechanism of dolphin skin. Graphene was added as a thermally conductive filler at weight fractions of 0.17 wt%, 0.33 wt% and 0.67 wt% to pristine silicone rubber (PSR). Tests of the thermal conductivity and tensile properties showed that the thermal conductivity of all three GPL/SR materials of 0.17 wt%, 0.33 wt% and 0.67 wt% graphene were 20%, 40% and 50% higher than that of the P SR, respectively, and the elastic modulus of the 0.17 wt% GPL/SR materials was lowest. Droplet velocity testing, which can reflect the drag reduction mechanism of the heating boundary controlled by the GPL/SR composite, was performed between 0.33 wt% GPL/SR, which typically exhibits good mechanical properties and thermal conductivity performance, and the PSR. The results showed that on the 0.33 wt% GPL/SR, the droplet velocity was higher and the rolling angle was lower, implying that the GPL/SR composite had a drag-reducing function. In terms of the drag reduction mechanism, the heat conductivity performance of the GPL/SR accelerated the heat transfer between the GPL/SR composite surface and the droplet. The forces between the molecules decreased and the droplet dynamic viscosity was reduced. The drag of a sliding water droplet was proportional to the dynamic viscosity, which resulted in drag reduction. The application of GPL/SR material to the control fluid medium should have important value for fluid machinery.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFB2602800)the National Natural Science Foundation of China(Grant Nos.51879231,51679214)。
文摘This paper aims to enhance the compression capacity of underwater cylindrical shells by adopting the corrugated sandwich structure of cuttlebone.The cuttlebone suffers uniaxial external compression,while underwater cylindrical shells are in a biaxial compressive stress state.To suit the biaxial compressive stress state,a novel bidirectional corrugated sandwich structure is proposed to improve the bearing capacity of cylindrical shells.The static and buckling analysis for the sandwich shell and the unstiffened cylindrical shell with the same volume-weight ratio are studied by numerical simulation.It is indicated that the proposed sandwich shell can effectively reduce the ratio between circumferential and axial stress from 2 to 1.25 and improve the critical buckling load by about 1.63 times.Numerical simulation shows that optimizing and adjusting the structural parameters could significantly improve the advantage of the sandwich shell.Then,the hydrostatic pressure tests for shell models fabricated by 3D printing are carried out.According to the experimental results,the overall failure position of the sandwich shell is at the center part of the sandwich shell.It has been found the average critical load of the proposed sandwich shell models exceeds two times that of the unstiffened shell models.Hence,the proposed bio-inspired bidirectional corrugated sandwich structure can significantly enhance the pressure resistance capability of cylindrical shells.
文摘Bio-inspiration is a starting point from which to design engineering products by learning the secrets of living creatures. We present the design, analysis, and experimental results of a robotic platform inspired by the basilisk lizard, which is well known for its ability to run on water surface. The goal is to develop a robotic platform for amphibious locomotion on ground and water using a single configuration. A tripod gait is achieved with a hexapedal configuration and four-bar-based repeated motion of the legs. The hexapedal configuration is empirically proven to have an advantage in terms of rolling stability on water. On ground, the tripod gait can satisfy the requirements of static stability to make the center of gravity and center of pressure occur at the same position. The footpad design was determined based on an empirical study of the rolling stability and lifting force. The theoretical background and experimental results are presented to validate the ability of the proposed design to run on water and on the ground.
基金supported by the Joint Funds of NUAASEU(No.6907046031)the National Natural Science Foundation of China(Nos.52076043 and 52222609).
文摘Biomimetics provides guidance to design and synthesize advanced catalysts for oxygen reduction reaction in microbial fuel cells(MFCs).Herein,jellyfish-inspired Fe clusters on carbon nanotubes connected with CuNC(Fe@CNT@CuNC)were designed and prepared by using zeolitic imidazolate framework(ZIF)-8 precursors to imitate the organic texture and function of jellyfish.The antibacterial effect of Cu^(+)ions depressed the growth of cathode biofilm to ensure rapid mass transport.Fe clusters and CuNC connected by CNTs accelerated the electron transfer from Fe to CuNC.The optimization of oxygen adsorption was caused by electron redistribution between sites of Fe and Cu.Jellyfish-like catalysts achieved a half-wave potential of 0.86 V and onset potential of 0.95 V vs.reversible hydrogen electrode(RHE).MFCs gained the maximum power density of 1600 mW·m^(-2) after 500 h measurement.This work provides insights into the special design of advanced catalysts based on bio-inspiration and biomimetics.
文摘Flapping-wing rotor(FWR)is an innovative bio-inspired micro aerial vehicle capable of vertical take-off and landing.This unique design combines active flapping motion and passive wing rotation around a vertical central shaft to enhance aerodynamic performance.The research on FWR,though relatively new,has contributed to 6%of core journal publications in the micro aerial vehicle field over the past two decades.This paper presents the first comprehensive review of FWR,analysing the current state of the art,key advances,challenges,and future research directions.The review highlights FWR’s distinctive kinematics and aerodynamic superiority compared to traditional flapping wings,fixed wings,and rotary wings,discussing recent breakthroughs in efficient,passive wing pitching and asymmetric stroke amplitude for lift enhancement.Recent experiments and remote-controlled take-off and hovering tests of single and dual-motor FWR models have showcased their effectiveness.The review compares FWR flight performance with well-developed insect-like flapping-wing micro aerial vehicles as the technology readiness level progresses from laboratory to outdoor flight testing,advancing from the initial flight of a 2.6 g prototype to the current free flight of a 60-gram model.The review also presents ongoing research in bionic flexible wing structures,flight stability and control,and transitioning between hovering and cruise flight modes for an FWR,setting the stage for potential applications.
基金supported by the Shenzhen Science and Technology Program(KQTD20180411143514543,JCYJ20220818100613029,and JSGGZD20220822095603006)the Guangdong Basic and Applied Basic Research Foundation(2021A1515110634)+2 种基金the National Natural Science Foundation of China(52303156)the Fundamental Research Funds for the Central Universities(XJS221301)Guangdong Provincial Key Laboratory Program(2021B1212040001)。
基金supported by the National Natural Science Foundation of China(No.61862051)the Science and Technology Foundation of Guizhou Province(No.[2019]1299,No.ZK[2022]550)+2 种基金the Top-Notch Talent Program of Guizhou Province(No.KY[2018]080)the Natural Science Foundation of Education of Guizhou Province(No.[2019]203)the Funds of Qiannan Normal University for Nationalities(No.qnsy2018003,No.qnsy2019rc09,No.qnsy2018JS013,No.qnsyrc201715).
文摘Thermal-aware routing protocols in WBANs consider temperature factors in the routing process for preventing overheating of the tissues surrounding the sensor nodes.However,providing an energy-efficient and thermal-aware routing in WBANs is a challenging issue.To deal with this problem,this article presents a novel temperature-aware routing protocol that applies Mamdani-based Fuzzy Logic Controllers(FLCs)for selecting the next forwarding node in routing data packets.These FLCs apply five important input factors such as the priority of the packet,and sensor node's remaining energy,temperature,distance,and link path loss.Also,a new hybrid version of the Marine Predator Algorithm(MPA),named MPAOA is presented by combining the exploration and exploitation phases of the MPA and Arithmetic Optimization Algorithm(AOA).This algorithm is effectively applied for selecting the best possible set of fuzzy rules for FLCs and tuning their fuzzy sets.Extensive experiments conducted in the Castalia simulator exhibit that the proposed temperature and priority-aware routing scheme can outperform other well-known routing schemes such as LATOR,TTRP,TAEO,ATAR,and EOCC-TARA in terms of metrics such as sensor nodes lifetime,the average temperature of the sensor nodes,and the percentage of the packets routed through non-overheated paths.Besides,it is shown that the MPAOA outperforms other algorithms such as Bat Algorithm(BA),Genetic Algorithm(GA),AOA,and MPA regarding the specified metrics.
文摘The increasing demand for energy absorbent structures,paired with the need for more efficient use of materials in a wide range of engineering fields,has led to an extensive range of designs in the porous forms of sandwiches,honeycomb,and foams.To achieve an even better performance,an ingenious solution is to learn how biological structures adjust their configurations to absorb energy without catastrophic failure.In this study,we have attempted to blend the shape freedom,offered by additive manufacturing techniques,with the biomimetic approach,to propose new lattice structures for energy absorbent applications.To this aim we have combined multiple bio-inspirational sources for the design of optimized configurations under compressive loads.Periodic lattice structures are fabricated based on the designed unit cell geometries and studied using experimental and computational strategies.The individual effect of each bio-inspired feature has been evaluated on the energy absorbance performance of the designed structure.Based on the design parameters of the lattices,a tuning between the strength and energy absorption could be obtained,paving the way for transition within a wide range of real-life applicative scenarios.
文摘Based on a bionic concept and combing air-cushion techniques and track driving mechanisms, a novel semi-floating hybrid concept vehicle is proposed to meet the transportation requirements on soft terrain. First, the vehicle scheme and its improved duel-spring flexible suspension design are described. Then, its fuel consumption model is proposed accordingly with respect to two vehicle operating parameters. Aiming at minimizing the fuel consumption, two Genetic Algorithms (GAs) are designed and implemented. For the initial one (GA-1), despite getting an acceptable result, there still existed some problems in its optimiza- tion process. Based on an analysis of the defects of GA-1, an improved algorithm GA-2 was developed whose effectiveness and stability were embodied in the optimization process and results. The proposed design scheme and optimization approaches can provide valuable references for this new kind of vehicle with industry, military or scientific exploitations, etc. promising applications in the areas of agriculture, petroleum industry, military or scientific explaitations, etc.
基金This work is supported by National Natural Science Foundation of China (No. 31672348), China-EU H2020 FabSurfWAR project (No. S2016G4501 and 644971), and 111 project (B 16020) of China.
文摘An insect is an excellent biological object for the bio-inspirations to design and develop a MAV. This paper presents the simulation study of the flight characteristics of the deployable hindwings of beetle, Dorcustitanus platymelus. A 3D geometric model of the beetle was obtained using a 3D laser scanning technique. By studying its hindwings and flight mechanism, the mathematical model of the flapping motion of its hindwings was analyzed. Then a simulation analysis was carried out to analyze and evaluate the flapping flying aerodynamic characteristics. After that, the flow of blood in the hindwing veins was studied through simulation to determine the maximum pressure on a vein surface and the minimum blood flow in flight. A number of interesting bio-inspirations were obtained. It is believed that these findings can be used for the design and development of a MAV with similar flying capabilities to a natural beetle.
文摘Robotics is one area of research in which bio-inspiration is an effective way to design a system by investigating the working principles of nature. Recently, tails have received interest in robotics to increase stability and maneuverability. In this study, we investigated the effectiveness of a static tail for bio-inspired water-running locomotion. The tail was added to increase the stability in the rolling and yawing directions based on the hydrodynamic force from interaction between the tail and the water. The drag coefficient in the interaction is not easy to calculate analytically, so experimental studies were done for various static tail shapes. Five different shapes and compliances in two directions were considered for experimental design candidates. The result was applied to design a stable amphibious robot that can run on ground and water surfaces.
基金supported by the Joint Training Doctoral Project of China Scholarship CouncilFunds for the Central Universities (Grant No. 3202003905)Scientific Innovation research of College Graduates in Jiangsu Province (Grant No. CXLX12_0080)
文摘The current work is oriented toward the development of a novel biologically inspired bat aerial robot with morphing wings. Based on the flight characteristics data of natural bats(Eptesicus fuscus), a novel four degrees of freedom robotic bat wing was developed to emulate the movements of bat wing. The design, fabrication, programing and wind tunnel experiments of the robot bat wing are described in this paper. Based on this robotic wing, the influence of flap amplitude, wind speed, flight frequency, downstroke ratio and stroke plane angle as well as the contributions of flap, elbow, sweep and wrist motions on the aerodynamic force and mechanical power were studied and analyzed. Results of wind tunnel experiments validated that higher lift would bring greater power consumption, and the flap motion would generate the most force and need more energy expenditure compared with other motions of bat. The experimental results suggest that the flap and fold motions are indispensable to make a robotic bat wing that has a better flight performance. This study provides some implications and a better understanding for the future robotic bat.
文摘This paper presents our efforts to explain why mammals have large thigh muscles while insects have small ones. After a discussion of this observation a definition of body foot ratio is defined which describes how animals stand and how their legs are arranged. To investigate the mechanics, we present a closed optimum solution of the body foot ratio for a 2D two-leg walking machine. A multi-walker is used as a case for 3D general analysis, and the numerical simulation is presented. Both 2D and 3D case studies can explain the above observations of mammals and insects. These findings can also be used as a guide for the design of man-made limbed machines.
基金This work was supported by National Natural Science Foundation of China (51375204) and Jilin Provincial Science & Technology Department (201401 01056JC). The authors thank Prof. Hongwei Zhao and Dr. Zhichao Ma from College of Mechanical Science and Engineering, Jilin University, for their help on real-time optical imaging in tensile testing. The authors also thank Prof. Wei Zhang from University of Colorado at Boulder for the discussion of polyimine synthesis.
文摘Natural composites have inspired the fabrication of various biomimetic composites that have achieved enhancement on certain mechanical performance. Herein, a facial approach enabled by recent advances in polyimine chemistry has been developed to fabricate bio-inspired hard-soft-integrated copolymers from two polyimines (i.e. PI-H and PI-S) with hardness differential. Subsequent evaluations of multiple mechanical properties on the bio-inspired copolymers with PI-S contents of full-range variability (0 wt%-100 wt%) have revealed extremal transitions for friction coefficients, impact strengths and tensile moduli. More interestingly, the minimum points of friction coefficients show a deformation-resisting response toward the change of applied loads, but not for the altered sliding speeds, suggesting a more significant role of load in determining the optimal anti-friction composition of the hard-soft integrated copolymers. These trends have been further corroborated by scanning electron microscopy of the worn specimens. Together these results have demonstrated that full-range extremal tran- sitions exist on multiple mechanical properties for hard-soft-integrated copolymers, providing valuable insights to the design and fabrication of composite polymers for many applications. The polyimine-based approach outlined here also affords a convenient method to tune the ratio of two components in the copolymers within the full range of 0 wt%-100 wt%, enabling quick integration with high content variability.
文摘介绍了爬壁动物的运动附着与仿生。动物用来实现在壁面上附着的器官主要有足爪、光滑爪垫和刚毛爪垫。在粗糙表面上动物使用足爪附着,基于机械内锁合的附着机制。在相对光滑的表面上,动物则使用光滑足垫或刚毛足垫实现附着。光滑足垫是基于毛细吸附的附着机制,称为湿黏附;刚毛足垫主要是基于van der Waals力的附着机制,称为干黏附。爬壁机器人主要有生物机器人和仿生爬壁机器人两种,都是基于爬壁动物的附着机制的仿生应用。