The outbreak of Coronavirus Disease 2019(COVID-19)has posed a serious threat to global public health,calling for the development of safe and effective prophylactics and therapeutics against infection of its causative ...The outbreak of Coronavirus Disease 2019(COVID-19)has posed a serious threat to global public health,calling for the development of safe and effective prophylactics and therapeutics against infection of its causative agent,severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),also known as 2019 novel coronavirus(2019-nCoV).The CoV spike(S)protein plays the most important roles in viral attachment,fusion and entry,and serves as a target for development of antibodies,entry inhibitors and vaccines.Here,we identified the receptor-binding domain(RBD)in SARS-CoV-2 S protein and found that the RBD protein bound strongly to human and bat angiotensin-converting enzyme 2(ACE2)receptors.SARS-CoV-2 RBD exhibited significantly higher binding affinity to ACE2 receptor than SARS-CoV RBD and could block the binding and,hence,attachment of SARS-CoV-2 RBD and SARS-CoV RBD to ACE2-expressing cells,thus inhibiting their infection to host cells.SARS-CoV RBD-specific antibodies could crossreact with SARS-CoV-2 RBD protein,and SARS-CoV RBD-induced antisera could cross-neutralize SARS-CoV-2,suggesting the potential to develop SARS-CoV RBD-based vaccines for prevention of SARS-CoV-2 and SARS-CoV infection.展开更多
The outbreak of coronavirus disease(COVID-19)caused by SARS-CoV-2 virus continually lead to worldwide human infections and deaths.Currently,there is no specific viral protein-targeted therapeutics.Viral nucleocapsid p...The outbreak of coronavirus disease(COVID-19)caused by SARS-CoV-2 virus continually lead to worldwide human infections and deaths.Currently,there is no specific viral protein-targeted therapeutics.Viral nucleocapsid protein is a potential antiviral drug target,serving multiple critical functions during the viral life cycle.However,the structural information of SARS-CoV-2 nucleocapsid protein remains unclear.Herein,we have determined the 2.7 A crystal structure of the N-terminal RNA binding domain of SARS-CoV-2 nucleocapsid protein.Although the overall structure is similar as other reported coronavirus nucleocapsid protein N-terminal domain,the surface electrostatic potential characteristics between them are distinct.Further comparison with mild virus type HCoV-OC43 equivalent domain demonstrates a unique potential RNA binding pocket alongside theβ-sheet core.Complemented by in vitro binding studies,our data provide several atomic resolution features of SARS-CoV-2 nucleocapsid protein N-terminal domain,guiding the design of novel antiviral agents specific targeting to SARS-CoV-2.展开更多
The rapid accumulation of mutations in the SARS-CoV-2 Omicron variant that enabled its outbreak raises questions as to whether its proximal origin occurred in humans or another mammalian host. Here, we identified 45 p...The rapid accumulation of mutations in the SARS-CoV-2 Omicron variant that enabled its outbreak raises questions as to whether its proximal origin occurred in humans or another mammalian host. Here, we identified 45 point mutations that Omicron acquired since divergence from the B.1.1 lineage. We found that the Omicron spike protein sequence was subjected to stronger positive selection than that of any reported SARS-CoV-2 variants known to evolve persistently in human hosts, suggesting a possibility of hostjumping. The molecular spectrum of mutations(i.e., the relative frequency of the 12 types of base substitutions) acquired by the progenitor of Omicron was significantly different from the spectrum for viruses that evolved in human patients but resembled the spectra associated with virus evolution in a mouse cellular environment. Furthermore, mutations in the Omicron spike protein significantly overlapped with SARS-CoV-2 mutations known to promote adaptation to mouse hosts, particularly through enhanced spike protein binding affinity for the mouse cell entry receptor. Collectively, our results suggest that the progenitor of Omicron jumped from humans to mice, rapidly accumulated mutations conducive to infecting that host,then jumped back into humans, indicating an inter-species evolutionary trajectory for the Omicron outbreak.展开更多
Although VEGFR-3 deficiency disrupts blood vascular development during early embryogenesis, the underlying mechanism was not clear. To characterize its function in angiogenesis and lymphangiogenesis, we employed two g...Although VEGFR-3 deficiency disrupts blood vascular development during early embryogenesis, the underlying mechanism was not clear. To characterize its function in angiogenesis and lymphangiogenesis, we employed two genetically modified mouse models in this study, targeting the coding region for the ligand-binding domain (Vegfr△LBD) or the tyrosine kinase domain with an inactivation point mutation (Vegfr3^TKmat). We show that lymphatic growth was disrupted in Vegfr3△LBD/△LBD and Vegfr3^TKmut3^TKmat mice, but blood vessels developed normally in both embryo and yolk sac. Interestingly, in Vegfr3△LBD/△LBD but not Vegfr3^TKmut3^TKmat mice, lymph sac was present but there was lack of iym- phangiogenic sprouting. We further demonstrate that both the wild-type and mutant forms of VEGFR-3 could form heterodimers with VEGFR-2, and decreased the level of phospho-VEGFR-2 and the downstream phospho-Erk1/2 in endothelial cells when they were treated with VEGF-A. These findings indicate that signaling mediated via VEGFR-3 activation by its cognate ligands (VEGF-C/-D) is not required for angiogenesis, and that VEGFR-3 may play a role in this process by modulating VEGFR-2-mediated signals.展开更多
Obstructive sleep apnea can worsen the prognosis of subarachnoid hemorrhage.Howeve r,the underlying mechanism remains unclear.In this study,we established a mouse model of subarachnoid hemorrhage using the endovascula...Obstructive sleep apnea can worsen the prognosis of subarachnoid hemorrhage.Howeve r,the underlying mechanism remains unclear.In this study,we established a mouse model of subarachnoid hemorrhage using the endovascular perforation method and exposed the mice to intermittent hypoxia for 8 hours daily for 2 consecutive days to simulate sleep apnea.We found that sleep apnea aggravated brain edema,increased hippocampal neuron apoptosis,and worsened neurological function in this mouse model of subarachnoid hemorrhage.Then,we established an in vitro HT-22 cell model of hemin-induced subarachnoid hemorrhage/intermittent hypoxia and found that the cells died,and lactate dehydrogenase release increased,after 48 hours.We further investigated the underlying mechanism and found that sleep apnea increased the expression of hippocampal neuroinflammatory factors interleukin-1β,interleukin-18,inte rleukin-6,nuclear factorκB,pyro ptosis-related protein caspase-1,pro-caspase-1,and NLRP3,promoted the prolife ration of astrocytes,and increased the expression of hypoxia-inducible factor 1αand apoptosis-associated speck-like protein containing a CARD,which are the key proteins in the hypoxia-inducible factor 1α/apoptosis-associated speck-like protein containing a CARD signaling pathway.We also found that knockdown of hypoxia-inducible factor 1αexpression in vitro greatly reduced the damage to HY22 cells.These findings suggest that sleep apnea aggravates early brain injury after subarachnoid hemorrhage by aggravating neuroinflammation and pyroptosis,at least in part through the hypoxia-inducible factor 1α/apoptosis-associated speck-like protein containing a CARD signaling pathway.展开更多
AIM:To investigate the reciprocal modulation between microRNA(miRNA) and DNA methylation via exploring the correlation between miR-373 and methyl-CpGbinding domain protein(MBD)2.METHODS:MiR-373 expression was examined...AIM:To investigate the reciprocal modulation between microRNA(miRNA) and DNA methylation via exploring the correlation between miR-373 and methyl-CpGbinding domain protein(MBD)2.METHODS:MiR-373 expression was examined using the TaqMan miRNA assay.Methylation of miR-373 was investigated using methylation-specific polymerase chain reaction,and recruitment of methyl binding proteins was studied using the chromatin immunoprecipitation assay.Mutation analysis was conducted using the QuikChange Site-Directed Mutagenesis kit.The activity of miR-373 gene promoter constructs and targeting at MBD2-three prime untranslated region(3'UTR) by miR-373 were evaluated by a dual-luciferase reporter gene assay.RESULTS:In hilar cholangiocarcinoma,miR-373 decreased and was closely associated with poor cell differentiation,advanced clinical stage,and shorter survival.The promoter-associated CpG island of miR-373 gene was hypermethylated and inhibited expression of miR-373.MBD2 was up-regulated and enriched at the promoter-associated CpG island of miR-373.Methylation-mediated suppression of miR-373 required MBD2 enrichment at the promoter-associated CpG island,and miR-373 negatively regulated MBD2 expression through targeting the 3'UTR.CONCLUSION:MiR-373 behaves as a direct transcriptional target and negative regulator of MBD2 activity through a feedback loop of CpG island methylation.展开更多
Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways...Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pat展开更多
Plant intracellular nucleotide binding leucine-rich repeat (NLR) immune receptors play critical roles in pathoge n surveillance. Most plant NLRs characterized so far were found to use a single domain/sensor to recogni...Plant intracellular nucleotide binding leucine-rich repeat (NLR) immune receptors play critical roles in pathoge n surveillance. Most plant NLRs characterized so far were found to use a single domain/sensor to recognize pathogen effectors. Here we report that the Sw-5b NLR immune receptor uses two distinct domains to detect the viral movement protein NSm encoded by tospovirus. In addition to its leucine-rich repeat (LRR) domain that has been previously reported, the N-terminal Solanaceae domain (SD) of Sw- 5b also interacts with NSm and a conserved 21-amino-acid region of NSm (NSm^21). The specific interaction between Sw-5b SD and NSm is required for releasing the inhibitory effect of coiled-coil domain on the NBARC- LRR region. Furthermore, we found that the binding of NSm affects the nucleotide binding activity of the NB-ARC-LRR in vitro, while Sw-5b NB-ARC-LRR is activated only when NSm and NSm^21 levels are high. Interestingly, Sw-5b SD could significantly enhanee the ability of the NB-ARC-LRR to detect low levels of NSm effector and facilitate its activation and induction of defense response. An Sw-5b SD mutant that is disrupted in NSm recognition failed to enhance the ability of the NB-ARC-LRR to sense low levels of NSm and NSm^21 . Taken together, our results suggest that Sw-5b SD functions as an extra sensor and the NB-ARC-LRR as an activator, and that Sw-5b NLR adopts a two-step recog nition mechanism to enhance viral effector perception.展开更多
BACKGROUND Sotos syndrome is an autosomal dominant disorder,whereas attention-deficit/hyperactivity disorder(ADHD)is a neurodevelopmental condition.This report aimed to summarize the clinical and genetic features of a...BACKGROUND Sotos syndrome is an autosomal dominant disorder,whereas attention-deficit/hyperactivity disorder(ADHD)is a neurodevelopmental condition.This report aimed to summarize the clinical and genetic features of a pediatric case of Soros syndrome and ADHD in a child exhibiting precocious puberty.CASE SUMMARY The patient presented with accelerated growth and advanced skeletal maturation;however,she lacked any distinct facial characteristics related to specific genetic disorders.Genetic analyses revealed a paternally inherited heterozygous synonymous mutation[c.4605C>T(p.Arg1535Arg)].Functional analyses suggested that this mutation may disrupt splicing,and bioinformatics analyses predicted that this mutation was likely pathogenic.After an initial diagnosis of Sotos syndrome,the patient was diagnosed with ADHD during the follow-up period at the age of 8 years and 7 months.CONCLUSION The potential for comorbid ADHD in Sotos syndrome patients should be considered to avoid the risk of a missed diagnosis.展开更多
Transitory starch is an important carbon source in leaves,and its biosynthesis and metabolism are closely related to grain quality and yield.The molecular mechanisms controlling leaf transitory starch biosynthesis and...Transitory starch is an important carbon source in leaves,and its biosynthesis and metabolism are closely related to grain quality and yield.The molecular mechanisms controlling leaf transitory starch biosynthesis and degradation and their effects on rice(Oryza sativa)quality and yield remain unclear.Here,we show that OsLESV and OsESV1,the rice orthologs of AtLESV and AtESV1,are associated with transitory starch biosynthesis in rice.The total starch and amylose contents in leaves and endosperms are significantly reduced,and the final grain quality and yield are compromised in oslesv and osesv1 single and oslesv esv1 double mutants.Furthermore,we found that OsLESV and OsESV1 bind to starch,and this binding depends on a highly conserved C-terminal tryptophan-rich region that acts as a starch-binding domain.Importantly,OsLESV and OsESV1 also interact with the key enzymes of starch biosynthesis,granule-bound starch synthase I(GBSSI),GBSSII,and pyruvate orthophosphote dikiase(PPDKB),to maintain their protein stability and activity.OsLESV and OsESV1 also facilitate the targeting of GBSSI and GBSSII from plastid stroma to starch granules.Overexpression of GBSSI,GBSSII,and PPDKB can partly rescue the phenotypic defects of the oslesv and osesv1 mutants.Thus,we demonstrate that OsLESV and OsESV1 play a key role in regulating the biosynthesis of both leaf transitory starch and endosperm storage starch in rice.These findings deepen our understanding of the molecular mechanisms underlying transitory starch biosynthesis in rice leaves and reveal how the transitory starch metabolism affects rice grain quality and yield,providing useful information for the genetic improvement of rice grain quality and yield.展开更多
Toll-like receptor 4 (TLR4) is essential for initiating the innate response to lipopolysaccharide (LPS) from Gram-negative bacteria by acting as a signal transducting receptor. In order to help in investigating TL...Toll-like receptor 4 (TLR4) is essential for initiating the innate response to lipopolysaccharide (LPS) from Gram-negative bacteria by acting as a signal transducting receptor. In order to help in investigating TLR4 as a candidate disease-resistance gene in cows, we isolated the cDNA (GenBank accession no. DQ839566) by RT-PCR and rapid amplification of cDNA ends (RACE) experiments and analyzed the sequence characters by bioinformatics. The results showed that cattle TLR4 gene about 3 739 bp contains an open reading frame of 2 526 bp encoded 841 amino acids (aa), 470 bp 5′ untranslated region (UTR), and 743 bp 3′ UTR. Tissue expression profile by RT-PCR indicated that TLR4 gene expresses in mammary glands, liver, muscle, duodenum, fats, uterus, kidneys, hearts, lungs, pancreas, and ovary. TLR4 protein domain predicted by bioinformatics consists of signal peptide, transmembrane helices domain, 3 sorts of leucine-rich repeat domains (LRR, LRR-TYP, and LRRCT), and a toll-interleukinl-resistance domain (TIR). Leucine-rich repeat domains were related with recognizing a broad of pathogen-associated molecular patterns (PAMP) from pathogen, and TIR domain for downstream signaling transduction was most conservative (98% identify) than other domains after alignment of protein from ovine, porcine, human, and mouse. In addition, a 470 bp 5′-flanking region sequence was amplified by PCR, and 15 putative DNA binding sites were predicted, but this sequence lacks TATA box, CCAAT character, and GC-rich regions.展开更多
AIM TO uncover the roles of tumor-promoting gene ZEB1 in aerobic glycolysis regulation and shed light on the underlying molecular mechanism.METHODS Endogenous zinc finger E-box binding homeobox-1 (ZEB1) was silenced...AIM TO uncover the roles of tumor-promoting gene ZEB1 in aerobic glycolysis regulation and shed light on the underlying molecular mechanism.METHODS Endogenous zinc finger E-box binding homeobox-1 (ZEB1) was silenced using a and the impact of ZEB1 and lentivirus-mediated method, methyI-CpG binding domain protein 1 (MBD1) on aerobic glycolysis was measured using seahorse cellular flux analyzers, reactive oxygen species quantification, and mitochondrial membrane potential measurement. The interaction between ZEB1 and MBD1 was assessed by co-immunoprecipitation and immunofluorescence assays. The impact of ZEB1 and MBD1 interaction on sirtuin 3 (SIRT3) expression was confirmed by quantitative polymerase chain reaction, western blotting, and dual-luciferase and chromatinimmunoprecipitation assays.RESULTS ZEB1 was a positive regulator of aerobic glycolysis in pancreatic cancer. ZEB1 transcriptionally silenced expression of SIRT3, a mitochondrial-localized tumor suppressor, through interaction with MBD1.CONCLUSION ZEB1 silenced SIRT3 expression via interaction with MBD1 to promote aerobic glycolysis in pancreatic cancer.展开更多
Programmed death-1 (PD-1), a member of CD28 family, is able to negatively regulate the TCR complex-initiated signaling by interacting with its cognate ligands (PD-L1 and/or PD-L2). PD-1/PD-L1 pathway plays an impo...Programmed death-1 (PD-1), a member of CD28 family, is able to negatively regulate the TCR complex-initiated signaling by interacting with its cognate ligands (PD-L1 and/or PD-L2). PD-1/PD-L1 pathway plays an important role in down-regulating the effective phase of adaptive immune responses and the blockade of this pathway has been proved to enhance antiviral and antitumoral immunity, suggesting that it might be a potential target for the development of therapies to improve T cell responses in patients with virus infections or malignancies. In present study, the extracellular domain of human PD-1 with a carboxyl terminal His-tag (designated as sPD-1) was expressed as inclusion bodies in Escherichia coll. The product was on-column refolded, purified by immobilized metal affinity chromatography, and characterized by Western blotting. Furthermore, the soluble PD-1 with high purity possessed specific binding activity with its cognate ligand PD-L1, and the dissociation constant was 0.43 nmol/L as determined by Scatchard plot analysis. These results suggest that refolded sPD-1 from prokaryotic cells may be of therapeutic interest in enhancing antivirus and antitumoral immune responses.展开更多
This article provides commentary on the article by Zhang et al.In this original research,Zhang et al investigated the therapeutic potential of teneligliptin for diabetic cardiomyopathy(DCM),which was mediated by targe...This article provides commentary on the article by Zhang et al.In this original research,Zhang et al investigated the therapeutic potential of teneligliptin for diabetic cardiomyopathy(DCM),which was mediated by targeting the NOD-like receptor protein 3(NLRP3)inflammasome.Through the use of both in vivo and in vitro models,the study demonstrated that teneligliptin alleviates cardiac hyper-trophy,reduces myocardial injury,and mitigates the inflammatory responses as-sociated with DCM.These findings suggest that teneligliptin’s cardioprotective effects are mediated through the inhibition of NLRP3 inflammasome activation,positioning it as a promising therapeutic option for managing DCM in diabetic patients.展开更多
基金supported by the NIH grants(R01AI137472 and R01AI139092)intramural funds of the New York Blood Center(VIM-NYB616 and CFM-NYB595).
文摘The outbreak of Coronavirus Disease 2019(COVID-19)has posed a serious threat to global public health,calling for the development of safe and effective prophylactics and therapeutics against infection of its causative agent,severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),also known as 2019 novel coronavirus(2019-nCoV).The CoV spike(S)protein plays the most important roles in viral attachment,fusion and entry,and serves as a target for development of antibodies,entry inhibitors and vaccines.Here,we identified the receptor-binding domain(RBD)in SARS-CoV-2 S protein and found that the RBD protein bound strongly to human and bat angiotensin-converting enzyme 2(ACE2)receptors.SARS-CoV-2 RBD exhibited significantly higher binding affinity to ACE2 receptor than SARS-CoV RBD and could block the binding and,hence,attachment of SARS-CoV-2 RBD and SARS-CoV RBD to ACE2-expressing cells,thus inhibiting their infection to host cells.SARS-CoV RBD-specific antibodies could crossreact with SARS-CoV-2 RBD protein,and SARS-CoV RBD-induced antisera could cross-neutralize SARS-CoV-2,suggesting the potential to develop SARS-CoV RBD-based vaccines for prevention of SARS-CoV-2 and SARS-CoV infection.
基金supported by National Natural Science Foundation of China(31770801)Special Fund for Scientific and Technological Innovation Strategy of Guangdong Province of China(2018B030306029 and 2017A030313145)+2 种基金National Natural Science Foundation of China(81430041,81620108017)National Key Basic Research Program,China(SQ2018YFC090075)National Natural Science Foundation of China(81870019)
文摘The outbreak of coronavirus disease(COVID-19)caused by SARS-CoV-2 virus continually lead to worldwide human infections and deaths.Currently,there is no specific viral protein-targeted therapeutics.Viral nucleocapsid protein is a potential antiviral drug target,serving multiple critical functions during the viral life cycle.However,the structural information of SARS-CoV-2 nucleocapsid protein remains unclear.Herein,we have determined the 2.7 A crystal structure of the N-terminal RNA binding domain of SARS-CoV-2 nucleocapsid protein.Although the overall structure is similar as other reported coronavirus nucleocapsid protein N-terminal domain,the surface electrostatic potential characteristics between them are distinct.Further comparison with mild virus type HCoV-OC43 equivalent domain demonstrates a unique potential RNA binding pocket alongside theβ-sheet core.Complemented by in vitro binding studies,our data provide several atomic resolution features of SARS-CoV-2 nucleocapsid protein N-terminal domain,guiding the design of novel antiviral agents specific targeting to SARS-CoV-2.
基金supported by grants from the National Natural Science Foundation of China(31922014)。
文摘The rapid accumulation of mutations in the SARS-CoV-2 Omicron variant that enabled its outbreak raises questions as to whether its proximal origin occurred in humans or another mammalian host. Here, we identified 45 point mutations that Omicron acquired since divergence from the B.1.1 lineage. We found that the Omicron spike protein sequence was subjected to stronger positive selection than that of any reported SARS-CoV-2 variants known to evolve persistently in human hosts, suggesting a possibility of hostjumping. The molecular spectrum of mutations(i.e., the relative frequency of the 12 types of base substitutions) acquired by the progenitor of Omicron was significantly different from the spectrum for viruses that evolved in human patients but resembled the spectra associated with virus evolution in a mouse cellular environment. Furthermore, mutations in the Omicron spike protein significantly overlapped with SARS-CoV-2 mutations known to promote adaptation to mouse hosts, particularly through enhanced spike protein binding affinity for the mouse cell entry receptor. Collectively, our results suggest that the progenitor of Omicron jumped from humans to mice, rapidly accumulated mutations conducive to infecting that host,then jumped back into humans, indicating an inter-species evolutionary trajectory for the Omicron outbreak.
基金Acknowledgments We thank Dr Lena Claesson-Welsh (Uppsala University), and PIs of Model Animal Research Center (MARC, Nanjing University) for the helpful discussion about the work, and Yanlan Cao, Wenting Shi and all the staff in the MARC Animal facility of Nanjing University for excellent technical assistance. This work wasfinancially supported by grants from the National Natural Science Foundation of China (30771069, 30671038, and 30930028), the Ministry of Science and Technology of China (2006CB943500), and the Ministry of Education of China (NCET: Program for New Century Excellent Talents in University).
文摘Although VEGFR-3 deficiency disrupts blood vascular development during early embryogenesis, the underlying mechanism was not clear. To characterize its function in angiogenesis and lymphangiogenesis, we employed two genetically modified mouse models in this study, targeting the coding region for the ligand-binding domain (Vegfr△LBD) or the tyrosine kinase domain with an inactivation point mutation (Vegfr3^TKmat). We show that lymphatic growth was disrupted in Vegfr3△LBD/△LBD and Vegfr3^TKmut3^TKmat mice, but blood vessels developed normally in both embryo and yolk sac. Interestingly, in Vegfr3△LBD/△LBD but not Vegfr3^TKmut3^TKmat mice, lymph sac was present but there was lack of iym- phangiogenic sprouting. We further demonstrate that both the wild-type and mutant forms of VEGFR-3 could form heterodimers with VEGFR-2, and decreased the level of phospho-VEGFR-2 and the downstream phospho-Erk1/2 in endothelial cells when they were treated with VEGF-A. These findings indicate that signaling mediated via VEGFR-3 activation by its cognate ligands (VEGF-C/-D) is not required for angiogenesis, and that VEGFR-3 may play a role in this process by modulating VEGFR-2-mediated signals.
基金the Natural Science Foundation of Jiangsu Province(Youth Program),No.BK20190129National Scientific Program of Jiangsu Colleges and Universities of China,No.19KJB320012(both to LY)。
文摘Obstructive sleep apnea can worsen the prognosis of subarachnoid hemorrhage.Howeve r,the underlying mechanism remains unclear.In this study,we established a mouse model of subarachnoid hemorrhage using the endovascular perforation method and exposed the mice to intermittent hypoxia for 8 hours daily for 2 consecutive days to simulate sleep apnea.We found that sleep apnea aggravated brain edema,increased hippocampal neuron apoptosis,and worsened neurological function in this mouse model of subarachnoid hemorrhage.Then,we established an in vitro HT-22 cell model of hemin-induced subarachnoid hemorrhage/intermittent hypoxia and found that the cells died,and lactate dehydrogenase release increased,after 48 hours.We further investigated the underlying mechanism and found that sleep apnea increased the expression of hippocampal neuroinflammatory factors interleukin-1β,interleukin-18,inte rleukin-6,nuclear factorκB,pyro ptosis-related protein caspase-1,pro-caspase-1,and NLRP3,promoted the prolife ration of astrocytes,and increased the expression of hypoxia-inducible factor 1αand apoptosis-associated speck-like protein containing a CARD,which are the key proteins in the hypoxia-inducible factor 1α/apoptosis-associated speck-like protein containing a CARD signaling pathway.We also found that knockdown of hypoxia-inducible factor 1αexpression in vitro greatly reduced the damage to HY22 cells.These findings suggest that sleep apnea aggravates early brain injury after subarachnoid hemorrhage by aggravating neuroinflammation and pyroptosis,at least in part through the hypoxia-inducible factor 1α/apoptosis-associated speck-like protein containing a CARD signaling pathway.
基金Supported by National Natural Science Foundation of China,No. 81071998Hubei Natural Science Foundation,No.2008CDB159Specialized Research Fund for the Doctoral Program of Higher Education,No. 20070487114
文摘AIM:To investigate the reciprocal modulation between microRNA(miRNA) and DNA methylation via exploring the correlation between miR-373 and methyl-CpGbinding domain protein(MBD)2.METHODS:MiR-373 expression was examined using the TaqMan miRNA assay.Methylation of miR-373 was investigated using methylation-specific polymerase chain reaction,and recruitment of methyl binding proteins was studied using the chromatin immunoprecipitation assay.Mutation analysis was conducted using the QuikChange Site-Directed Mutagenesis kit.The activity of miR-373 gene promoter constructs and targeting at MBD2-three prime untranslated region(3'UTR) by miR-373 were evaluated by a dual-luciferase reporter gene assay.RESULTS:In hilar cholangiocarcinoma,miR-373 decreased and was closely associated with poor cell differentiation,advanced clinical stage,and shorter survival.The promoter-associated CpG island of miR-373 gene was hypermethylated and inhibited expression of miR-373.MBD2 was up-regulated and enriched at the promoter-associated CpG island of miR-373.Methylation-mediated suppression of miR-373 required MBD2 enrichment at the promoter-associated CpG island,and miR-373 negatively regulated MBD2 expression through targeting the 3'UTR.CONCLUSION:MiR-373 behaves as a direct transcriptional target and negative regulator of MBD2 activity through a feedback loop of CpG island methylation.
基金supported by the German Research Council(Deutsche Forschungsgemeinschaft,HA3309/3-1/2,HA3309/6-1,HA3309/7-1)。
文摘Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pat
基金the National Natural Science Foundation, China (31630062, 31801705 and 31870143)the National Program on Key Basic Research Project, China (973 Program, 2014CB138400)+4 种基金the Youth Talent Support Program, China and Distinguished Professor of Jiangsu Province, China to X.T.the Natural Science Foundation of Jiangsu Province, China (BK20180532)the Postdoctoral Science Foundation, China (2018M642269) to J.L.the National Science Foundation grants, United States (NSF-IOS-1354434 and NSF-IOS-1339185) to S.P.D.-K. The materials of tomato wild species were obtained from the UC Davis/C.Mmaintained by the Department of Plant Sciences, University of California, Davis, CA.
文摘Plant intracellular nucleotide binding leucine-rich repeat (NLR) immune receptors play critical roles in pathoge n surveillance. Most plant NLRs characterized so far were found to use a single domain/sensor to recognize pathogen effectors. Here we report that the Sw-5b NLR immune receptor uses two distinct domains to detect the viral movement protein NSm encoded by tospovirus. In addition to its leucine-rich repeat (LRR) domain that has been previously reported, the N-terminal Solanaceae domain (SD) of Sw- 5b also interacts with NSm and a conserved 21-amino-acid region of NSm (NSm^21). The specific interaction between Sw-5b SD and NSm is required for releasing the inhibitory effect of coiled-coil domain on the NBARC- LRR region. Furthermore, we found that the binding of NSm affects the nucleotide binding activity of the NB-ARC-LRR in vitro, while Sw-5b NB-ARC-LRR is activated only when NSm and NSm^21 levels are high. Interestingly, Sw-5b SD could significantly enhanee the ability of the NB-ARC-LRR to detect low levels of NSm effector and facilitate its activation and induction of defense response. An Sw-5b SD mutant that is disrupted in NSm recognition failed to enhance the ability of the NB-ARC-LRR to sense low levels of NSm and NSm^21 . Taken together, our results suggest that Sw-5b SD functions as an extra sensor and the NB-ARC-LRR as an activator, and that Sw-5b NLR adopts a two-step recog nition mechanism to enhance viral effector perception.
文摘BACKGROUND Sotos syndrome is an autosomal dominant disorder,whereas attention-deficit/hyperactivity disorder(ADHD)is a neurodevelopmental condition.This report aimed to summarize the clinical and genetic features of a pediatric case of Soros syndrome and ADHD in a child exhibiting precocious puberty.CASE SUMMARY The patient presented with accelerated growth and advanced skeletal maturation;however,she lacked any distinct facial characteristics related to specific genetic disorders.Genetic analyses revealed a paternally inherited heterozygous synonymous mutation[c.4605C>T(p.Arg1535Arg)].Functional analyses suggested that this mutation may disrupt splicing,and bioinformatics analyses predicted that this mutation was likely pathogenic.After an initial diagnosis of Sotos syndrome,the patient was diagnosed with ADHD during the follow-up period at the age of 8 years and 7 months.CONCLUSION The potential for comorbid ADHD in Sotos syndrome patients should be considered to avoid the risk of a missed diagnosis.
基金supported by the"STI2030-Major Project"of China(2023ZD04072)the National Major Agriculture Science and Technolohy Project of China(NK2022050102)+1 种基金the National Natural Science Foundation of China(32372099 and 32188102)the Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-CACB-202402).
文摘Transitory starch is an important carbon source in leaves,and its biosynthesis and metabolism are closely related to grain quality and yield.The molecular mechanisms controlling leaf transitory starch biosynthesis and degradation and their effects on rice(Oryza sativa)quality and yield remain unclear.Here,we show that OsLESV and OsESV1,the rice orthologs of AtLESV and AtESV1,are associated with transitory starch biosynthesis in rice.The total starch and amylose contents in leaves and endosperms are significantly reduced,and the final grain quality and yield are compromised in oslesv and osesv1 single and oslesv esv1 double mutants.Furthermore,we found that OsLESV and OsESV1 bind to starch,and this binding depends on a highly conserved C-terminal tryptophan-rich region that acts as a starch-binding domain.Importantly,OsLESV and OsESV1 also interact with the key enzymes of starch biosynthesis,granule-bound starch synthase I(GBSSI),GBSSII,and pyruvate orthophosphote dikiase(PPDKB),to maintain their protein stability and activity.OsLESV and OsESV1 also facilitate the targeting of GBSSI and GBSSII from plastid stroma to starch granules.Overexpression of GBSSI,GBSSII,and PPDKB can partly rescue the phenotypic defects of the oslesv and osesv1 mutants.Thus,we demonstrate that OsLESV and OsESV1 play a key role in regulating the biosynthesis of both leaf transitory starch and endosperm storage starch in rice.These findings deepen our understanding of the molecular mechanisms underlying transitory starch biosynthesis in rice leaves and reveal how the transitory starch metabolism affects rice grain quality and yield,providing useful information for the genetic improvement of rice grain quality and yield.
基金supported by the Key Technology R&D Program of China during the 11th Five-Year Plan period (2006BAD01A10, 2006BAD14B07, and2006BAD04A16)the National High Technology Research and Development Program of China(2006AA10Z197)
文摘Toll-like receptor 4 (TLR4) is essential for initiating the innate response to lipopolysaccharide (LPS) from Gram-negative bacteria by acting as a signal transducting receptor. In order to help in investigating TLR4 as a candidate disease-resistance gene in cows, we isolated the cDNA (GenBank accession no. DQ839566) by RT-PCR and rapid amplification of cDNA ends (RACE) experiments and analyzed the sequence characters by bioinformatics. The results showed that cattle TLR4 gene about 3 739 bp contains an open reading frame of 2 526 bp encoded 841 amino acids (aa), 470 bp 5′ untranslated region (UTR), and 743 bp 3′ UTR. Tissue expression profile by RT-PCR indicated that TLR4 gene expresses in mammary glands, liver, muscle, duodenum, fats, uterus, kidneys, hearts, lungs, pancreas, and ovary. TLR4 protein domain predicted by bioinformatics consists of signal peptide, transmembrane helices domain, 3 sorts of leucine-rich repeat domains (LRR, LRR-TYP, and LRRCT), and a toll-interleukinl-resistance domain (TIR). Leucine-rich repeat domains were related with recognizing a broad of pathogen-associated molecular patterns (PAMP) from pathogen, and TIR domain for downstream signaling transduction was most conservative (98% identify) than other domains after alignment of protein from ovine, porcine, human, and mouse. In addition, a 470 bp 5′-flanking region sequence was amplified by PCR, and 15 putative DNA binding sites were predicted, but this sequence lacks TATA box, CCAAT character, and GC-rich regions.
基金the National Science Fund for Distinguished Young Scholars of China,No.81625016the National Science Foundation of China,No.81502031 and No.81772555+1 种基金Shanghai Municipal Commission of Health and Family Planning Grant,No.20154Y0090Youth Research Foundation of Shanghai Municipal Commission of Health and Family Planning,No.Z0124Y074
文摘AIM TO uncover the roles of tumor-promoting gene ZEB1 in aerobic glycolysis regulation and shed light on the underlying molecular mechanism.METHODS Endogenous zinc finger E-box binding homeobox-1 (ZEB1) was silenced using a and the impact of ZEB1 and lentivirus-mediated method, methyI-CpG binding domain protein 1 (MBD1) on aerobic glycolysis was measured using seahorse cellular flux analyzers, reactive oxygen species quantification, and mitochondrial membrane potential measurement. The interaction between ZEB1 and MBD1 was assessed by co-immunoprecipitation and immunofluorescence assays. The impact of ZEB1 and MBD1 interaction on sirtuin 3 (SIRT3) expression was confirmed by quantitative polymerase chain reaction, western blotting, and dual-luciferase and chromatinimmunoprecipitation assays.RESULTS ZEB1 was a positive regulator of aerobic glycolysis in pancreatic cancer. ZEB1 transcriptionally silenced expression of SIRT3, a mitochondrial-localized tumor suppressor, through interaction with MBD1.CONCLUSION ZEB1 silenced SIRT3 expression via interaction with MBD1 to promote aerobic glycolysis in pancreatic cancer.
文摘Programmed death-1 (PD-1), a member of CD28 family, is able to negatively regulate the TCR complex-initiated signaling by interacting with its cognate ligands (PD-L1 and/or PD-L2). PD-1/PD-L1 pathway plays an important role in down-regulating the effective phase of adaptive immune responses and the blockade of this pathway has been proved to enhance antiviral and antitumoral immunity, suggesting that it might be a potential target for the development of therapies to improve T cell responses in patients with virus infections or malignancies. In present study, the extracellular domain of human PD-1 with a carboxyl terminal His-tag (designated as sPD-1) was expressed as inclusion bodies in Escherichia coll. The product was on-column refolded, purified by immobilized metal affinity chromatography, and characterized by Western blotting. Furthermore, the soluble PD-1 with high purity possessed specific binding activity with its cognate ligand PD-L1, and the dissociation constant was 0.43 nmol/L as determined by Scatchard plot analysis. These results suggest that refolded sPD-1 from prokaryotic cells may be of therapeutic interest in enhancing antivirus and antitumoral immune responses.
文摘This article provides commentary on the article by Zhang et al.In this original research,Zhang et al investigated the therapeutic potential of teneligliptin for diabetic cardiomyopathy(DCM),which was mediated by targeting the NOD-like receptor protein 3(NLRP3)inflammasome.Through the use of both in vivo and in vitro models,the study demonstrated that teneligliptin alleviates cardiac hyper-trophy,reduces myocardial injury,and mitigates the inflammatory responses as-sociated with DCM.These findings suggest that teneligliptin’s cardioprotective effects are mediated through the inhibition of NLRP3 inflammasome activation,positioning it as a promising therapeutic option for managing DCM in diabetic patients.
基金supported by the National Key R&D Program of China(2022YFC2303403)the National Natural Science Foundation of China(82225021 and 32171428)the CAS Young Scientists in Basic Research(YSBR-010)。