电网在运行过程中会产生大量的设备缺陷文本记录,针对变电设备缺陷文本的特点,文章提出了基于注意力机制的混合神经网络(hybrid neural network based on attention mechanism,HNNA)电力设备缺陷文本挖掘方法。首先在总结电力设备缺陷...电网在运行过程中会产生大量的设备缺陷文本记录,针对变电设备缺陷文本的特点,文章提出了基于注意力机制的混合神经网络(hybrid neural network based on attention mechanism,HNNA)电力设备缺陷文本挖掘方法。首先在总结电力设备缺陷文本特点的基础上,参考中文文本分类的一般流程,结合自主编写的词典和停用词表对缺陷文本进行预处理;利用Word2vec模型将词语映射到高维空间;使用卷积神经网络(convolution neural network,CNN)和双向长短期记忆网络(bidirectional long short term memory,BiLSTM)提取文本局部特征和上下文特征;将提取的特征进行融合,最后采用Attention实现特征权重的分配,增强关键特征对分类效果的影响,并从多个评价维度与传统机器学习模型、深度学习模型对比。算例结果表明,提出的模型具有更好的分类效果,可以实现电力设备缺陷等级的高效准确划分。展开更多
对乌尔都语到英语的机器翻译进行研究,提出一种基于双向编解码器的乌英机器翻译模型。利用语言模型嵌入(embedding from language models,ELMo)方法进行语料的预训练,缓解双语平行语料稀缺以及词汇表受限所导致的翻译正确率不佳的问题;...对乌尔都语到英语的机器翻译进行研究,提出一种基于双向编解码器的乌英机器翻译模型。利用语言模型嵌入(embedding from language models,ELMo)方法进行语料的预训练,缓解双语平行语料稀缺以及词汇表受限所导致的翻译正确率不佳的问题;采用双向编解码机制,避免翻译过程中方向性倾斜的问题,提高翻译效果。实验在少量平行语料库的基础上,对所提模型与传统的乌英机器翻译模型进行对比,实验结果表明,该模型较传统模型在双语评估替补(bilingual evaluation understudy,BLEU)评分上提升了2.42,最终该模型的BLEU评分为9.27。展开更多
文摘电网在运行过程中会产生大量的设备缺陷文本记录,针对变电设备缺陷文本的特点,文章提出了基于注意力机制的混合神经网络(hybrid neural network based on attention mechanism,HNNA)电力设备缺陷文本挖掘方法。首先在总结电力设备缺陷文本特点的基础上,参考中文文本分类的一般流程,结合自主编写的词典和停用词表对缺陷文本进行预处理;利用Word2vec模型将词语映射到高维空间;使用卷积神经网络(convolution neural network,CNN)和双向长短期记忆网络(bidirectional long short term memory,BiLSTM)提取文本局部特征和上下文特征;将提取的特征进行融合,最后采用Attention实现特征权重的分配,增强关键特征对分类效果的影响,并从多个评价维度与传统机器学习模型、深度学习模型对比。算例结果表明,提出的模型具有更好的分类效果,可以实现电力设备缺陷等级的高效准确划分。
文摘对乌尔都语到英语的机器翻译进行研究,提出一种基于双向编解码器的乌英机器翻译模型。利用语言模型嵌入(embedding from language models,ELMo)方法进行语料的预训练,缓解双语平行语料稀缺以及词汇表受限所导致的翻译正确率不佳的问题;采用双向编解码机制,避免翻译过程中方向性倾斜的问题,提高翻译效果。实验在少量平行语料库的基础上,对所提模型与传统的乌英机器翻译模型进行对比,实验结果表明,该模型较传统模型在双语评估替补(bilingual evaluation understudy,BLEU)评分上提升了2.42,最终该模型的BLEU评分为9.27。