期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于增量式双向主成分分析的机器人感知学习方法研究 被引量:15
1
作者 王肖锋 张明路 刘军 《电子与信息学报》 EI CSCD 北大核心 2018年第3期618-625,共8页
针对直观协方差无关增量式主成分分析算法(CCIPCA)需要满足零均值高斯分布的问题,该文提出含均值差向量更新的泛化CCIPCA算法(GCCIPCA),拓展了算法的适用范围。其次,针对机器人感知学习存在的在线增量计算及有效数据降维等问题,将GCCIPC... 针对直观协方差无关增量式主成分分析算法(CCIPCA)需要满足零均值高斯分布的问题,该文提出含均值差向量更新的泛化CCIPCA算法(GCCIPCA),拓展了算法的适用范围。其次,针对机器人感知学习存在的在线增量计算及有效数据降维等问题,将GCCIPCA的增量思想引入到现有的双向主成分分析算法(BDPCA),提出基于增量式BDPCA(IBDPCA)的机器人感知学习方法。该方法直接针对图像矩阵行列方向的类散度矩阵进行迭代估计,具有一定的泛化能力和快速的增量学习能力,提高了实时处理速度。最后,以机器人待抓取物块作为感知对象进行实验,结果表明所提算法能够满足机器人感知学习的实时处理需求,相比现有的增量式主成分分析算法,在收敛率、分类识别率、计算时间及所需内存等性能方面均得到显著提升。 展开更多
关键词 机器人感知学习 增量学习 数据降维 直观协方差无关增量式主成分分析 双向主成分分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部