AIM: To develop and optimize cDNA representational difference analysis (cDNA RDA) method and to identify and clone garlic up-regulated genes in human gastric cancer (HGC) cells. METHODS: We performed cDNA RDA method b...AIM: To develop and optimize cDNA representational difference analysis (cDNA RDA) method and to identify and clone garlic up-regulated genes in human gastric cancer (HGC) cells. METHODS: We performed cDNA RDA method by using abundant double-stranded cDNA messages provided by two self-constructed cDNA libraries (Allitridi-treated and paternal HGC cell line BGC823 cells cDNA libraries respectively). Bam H I and Xho I restriction sites harbored in the library vector were used to select representations. Northern and Slot blots analyses were employed to identify the obtained difference products. RESULTS: Fragments released from the cDNA library vector after restriction endonuclease digestion acted as good marker indicating the appropriate digestion degree for library DNA. Two novel expressed sequence tags (ESTs) and a recombinant gene were obtained. Slot blots result showed a 8-fold increase of glia-derived nexin/protease nexin 1 (GDN/PN1) gene expression level and 4-fold increase of hepatitis B virus x-interacting protein (XIP) mRNA level in BGC823 cells after Allitridi treatment for 72h. CONCLUSION: Elevated levels of GDN/PN1 and XIP mRNAs induced by Allitridi provide valuable molecular evidence for elucidating the garlic's efficacies against neurodegenerative and inflammatory diseases. Isolation of a recombinant gene and two novel ESTs further show cDNA RDA based on cDNA libraries to be a powerful method with high specificity and reproducibility in cloning differentially expressed genes.展开更多
Balanced immunity is pivotal for health and homeostasis.CD4+helper T(Th)cells are central to the balance between immune tolerance and immune rejection.Th cells adopt distinct functions to maintain tolerance and clear ...Balanced immunity is pivotal for health and homeostasis.CD4+helper T(Th)cells are central to the balance between immune tolerance and immune rejection.Th cells adopt distinct functions to maintain tolerance and clear pathogens.Dysregulation of Th cell function often leads to maladies,including autoimmunity,inflammatory disease,cancer,and infection.Regulatory T(Treg)and Th17 cells are critical Th cell types involved in immune tolerance,homeostasis,pathogenicity,and pathogen clearance.It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease.Cytokines are instrumental in directing Treg and Th17 cell function.The evolutionarily conserved TGF-β(transforming growth factor-β)cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory,pathogenic,and immune regulatory.How TGF-βsuperfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades.Here,we introduce the fundamental biology of TGF-βsuperfamily signaling,Treg cells,and Th17 cells and discuss in detail how the TGF-βsuperfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.展开更多
Diabetes mellitus is one of the common metabolic disorders acquiring around 2.8%of the world's population and is anticipated to cross 5.4%by the year 2025.Since long back herbal medicines have been the highly este...Diabetes mellitus is one of the common metabolic disorders acquiring around 2.8%of the world's population and is anticipated to cross 5.4%by the year 2025.Since long back herbal medicines have been the highly esteemed source of medicine therefore,they have become a growing part of modern,high-tech medicine.In view of the above aspects the present review provides profiles of plants(65 species) with hypoglycaemic properties,available through literature source from various database with proper categorization according to the parts used,mode of reduction in blood glucose(insulinomimetic or insulin secretagugues activity) and active phyloconsliluents having insulin mimetics activity.From the review it was suggested that,plant showing hypoglycemic potential mainly belongs to the family Leguminoseae,Lamiaceae,Liliaceae,Cucurbitaceae, Asteraceae,Moraceae,Rosaceae and Araliaceae.The most active plants are Allium sativum. Gymnema sylvestre,Citrullus colocynthis,Trigonella foenum greacum,Momordica charantia and Ficuts bengalensis.The review describes some new bioactive drugs and isolated compounds from plants such as roseoside,epigallocatechin gallate,beta-pyrazol-1-ylalanine,cinchonain Ib,leucocyandin 3-O-beta-d-galactosyl cellobioside,leucopelargonidin-3- O-alpha-L rhamuoside,glycyrrhetinic acid,dehydrotrametenolic acid,strictinin,isostrictinin,pedunculagin, epicatechin and christinin-A showing significant insulinomimetic and antidiabetic activity with more efficacy than conventional hypoglycaemic agents.Thus,from the review majorly,the antidiabetic activity of medicinal plants is attributed to the presence of polyphenols,flavonoida, terpenoids,coumarins and other constituents which show reduction in blood glucose levels.The review also discusses the management aspect of diabetes mellitus using these plants and their active principles.展开更多
Background The pathophysiology of type 2 diabetes is progressive pancreatic beta cell failure with consequential reduced insulin secretion. Glucotoxicity results in the reduction of beta cell mass in type 2 diabetes b...Background The pathophysiology of type 2 diabetes is progressive pancreatic beta cell failure with consequential reduced insulin secretion. Glucotoxicity results in the reduction of beta cell mass in type 2 diabetes by inducing apoptosis. Autophagy is essential for the maintenance of normal islet architecture and plays a crucial role in maintaining the intracellular insulin content by accelerating the insulin degradation rate in beta cells. Recently more attention has been paid to the effect of autophagy in type 2 diabetes. The regulatory pathway of autophagy in controlling pancreatic beta cells is still not clear. The aim of our study was to evaluate whether liraglutide can inhibit apoptosis and modulate autophagy in vitro in insulinoma cells (INS-1 cells). Methods INS-1 cells were incubated for 24 hours in the presence or absence of high levels of glucose, liraglutide (a long-acting human glucagon-like peptide-1 analogue), or 3-methyadenine (3-MA). Cell viability was measured using the Cell Counting Kit-8 (CCK8) viability assay. Autophagy of INS-1 cells was tested by monodansylcadaverine (MDC) staining, an autophagy fluorescent compound used for the labeling of autophagic vacuoles, and by Western blotting of microtubule-associated protein I light chain 3 (LC3), a biochemical markers of autophagic initiation. Results The viability of INS-1 cells was reduced after treatment with high levels of glucose. The viability of INS-1 cells was reduced and apoptosis was increased when autophagy was inhibited. The viability of INS-1 cells was significantly increased by adding liraglutide to supplement high glucose level medium compared with the cells treated with high glucose levels alone. Conclusions Apoptosis and autophagy were increased in rat INS-1 cells when treated with high level of glucose, and the viability of INS-1 cells was significantly reduced by inhibiting autophagy. Liraglutide protected INS-1 cells from high glucose level-induced apoptosis that is accompanied by a significant increase展开更多
Blood-brain barrier disruption occurs in the early stages of Alzheimer’s disease.Recent studies indicate a link between blood-brain barrier dysfunction and cognitive decline and might accelerate Alzheimer’s disease ...Blood-brain barrier disruption occurs in the early stages of Alzheimer’s disease.Recent studies indicate a link between blood-brain barrier dysfunction and cognitive decline and might accelerate Alzheimer’s disease progression.Astrocytes are the most abundant glial cells in the central nervous system with important roles in the structural and functional maintenance of the blood-brain barrier.For example,astrocytic cove rage around endothelial cells with perivascular endfeet and secretion of homeostatic soluble factors are two major underlying mechanisms of astrocytic physiological functions.Astrocyte activation is often observed in Alzheimer’s disease patients,with astrocytes expressing a high level of glial fibrillary acid protein detected around amyloid-beta plaque with the elevated phagocytic ability for amyloid-beta.Structural alte rations in Alzheimer’s disease astrocytes including swollen endfeet,somata shrinkage and possess loss contribute to disruption in vascular integrity at capillary and arte rioles levels.In addition,Alzheimer’s disease astrocytes are skewed into proinflammatory and oxidative profiles with increased secretions of vasoactive mediators inducing endothelial junction disruption and immune cell infiltration.In this review,we summarize the findings of existing literature on the relevance of astrocyte alte ration in response to amyloid pathology in the context of blood-brain barrier dysfunction.First,we briefly describe the physiological roles of astrocytes in blood-brain barrier maintenance.Then,we review the clinical evidence of astrocyte pathology in Alzheimer’s disease patients and the preclinical evidence in animal and cellular models.We further discuss the structural changes of blood-brain barrier that correlates with Alzheimer’s disease astrocyte.Finally,we evaluate the roles of soluble factors secreted by Alzheimer’s disease astrocytes,providing potential molecular mechanisms underlying blood-brain barrier modulation.We conclude with a perspective on investigating the展开更多
Background: Thymosin beta-4 (TB-4) is considered key roles in tissue development, maintenance and pathological processes. The study aimed to prove TB-4 positive biological function on nucleus pulposus (NP) cell a...Background: Thymosin beta-4 (TB-4) is considered key roles in tissue development, maintenance and pathological processes. The study aimed to prove TB-4 positive biological function on nucleus pulposus (NP) cell apoptosis and slowing the process of cell aging while increasing the cell proliferation. Methods: TB-4 recombinant adeno-associated virus (AAV) was constructed and induced to human NP cells. Cell of same group were cultured without gene modification as controlled group. Proliferation capacity and cell apoptosis were observed during 6 passages of the cells. Morphology and expression of the TB-4 gene were documented as parameter of cell activity during cell passage. Results: NP cells with TB-4 transfection has normal TB-4 expression and exocytosis. NP cells with TB-4 transfection performed significantly higher cell activity than that at the control group in each generation. TB-4 recombinant AAV-transfected human NP cells also show slower cell aging, lower cell apoptosis and higher cell proliferation than control group. Conclusions: TB-4 can prevent NP cell apoptosis, slow NP cell aging and promote NP cell proliferation. AAV transfection technique was able to highly and stably express TB-4 in human NP cells, which may provide a new pathway for innovation in the treatment of intervertebral disc degenerative diseases.展开更多
Alzheimer’s disease(hereafter AD) is a progressive neurodegenerative disorder that affects the central nervous system. There are multiple factors that cause AD, viz., accumulation of extracellular Amyloid-beta 42 pla...Alzheimer’s disease(hereafter AD) is a progressive neurodegenerative disorder that affects the central nervous system. There are multiple factors that cause AD, viz., accumulation of extracellular Amyloid-beta 42 plaques, intracellular hyper-phosphorylated Tau tangles, generation of reactive oxygen species due to mitochondrial dysfunction and genetic mutations. The plaques and tau tangles trigger aberrant signaling, which eventually cause cell death of the neurons. As a result, there is shrinkage of brain, cognitive defects, behavioral and psychological problems. To date, there is no direct cure for AD. Thus, scientists have been testing various strategies like screening for the small inhibitor molecule library or natural products that may block or prevent onset of AD. Historically, natural products have been used in many cultures for the treatment of various diseases. The research on natural products have gained importance as the active compounds extracted from them have medicinal values with reduced side effects, and they are bioavailable. The natural products may target the proteins or members of signaling pathways that get altered in specific diseases. Many natural products are being tested in various animal model systems for their role as a potential therapeutic target for AD, and to address questions about how these natural products can rescue AD or other neurodegenerative disorders. Some of these products are in clinical trials and results are promising because of their neuroprotective, anti-inflammatory, antioxidant, anti-amyloidogenic, anticholinesterase activities and easy availability. This review summarizes the use of animal model systems to identify natural products, which may serve as potential therapeutic targets for AD.展开更多
AIM: To analyze the associations of pancreatic fat with other fat depots and β-cell function in pediatric nonalcoholic fatty liver disease(NAFLD).METHODS: We examined 158 overweight/obese children and adolescents, 80...AIM: To analyze the associations of pancreatic fat with other fat depots and β-cell function in pediatric nonalcoholic fatty liver disease(NAFLD).METHODS: We examined 158 overweight/obese children and adolescents, 80 with NAFLD [hepatic fat fraction(HFF) ≥ 5%] and 78 without fatty liver. Visceral adipose tissue(VAT), pancreatic fat fraction(PFF) and HFF were determined by magnetic resonance imaging. Estimates of insulin sensitivity were calculated using the homeostasis model assessment of insulin resistance(HOMA-IR), defined by fasting insulin and fasting glucose and whole-body insulin sensitivity index(WBISI), based on mean values of insulin and glucose obtained from oral glucose tolerance test and the corresponding fasting values. Patients were considered to have prediabetes if they had either:(1) impaired fasting glucose, defined as a fasting glucose level ≥ 100 mg/d L to < 126 mg/d L;(2) impaired glucose tolerance, defined as a 2 h glucose concentration between ≥ 140 mg/d L and < 200 mg/d L; or(3) hemoglobin A1 c value of ≥ 5.7% to < 6.5%.RESULTS: PFF was significantly higher in NAFLD patients compared with subjects without liver involvement. PFF was significantly associated with HFF and VAT, as well as fasting insulin, C peptide, HOMA-IR, and WBISI. The association between PFF and HFF was no longer significant after adjusting for age, gender, Tanner stage, body mass index(BMI)-SD score, and VAT. In multiple regression analysis withWBISI or HOMA-IR as the dependent variables, against the covariates age, gender, Tanner stage, BMI-SD score, VAT, PFF, and HFF, the only variable significantly associated with WBISI(standardized coefficient B,-0.398; P = 0.001) as well as HOMA-IR(0.353; P = 0.003) was HFF. Children with prediabetes had higher PFF and HFF than those without. PFF and HFF were significantly associated with prediabetes after adjustment for clinical variables. When all fat depots where included in the same model, only HFF remained significantly associated with prediabetes(OR = 3.38; 95%CI: 1.10展开更多
Background Women with a history of gestational diabetes mellitus (GDM) are at higher risk of future development of diabetes. This study investigated the risk factors associated with early postpartum abnormal glucose...Background Women with a history of gestational diabetes mellitus (GDM) are at higher risk of future development of diabetes. This study investigated the risk factors associated with early postpartum abnormal glucose regulation (AGR) among Chinese women with a history of GDM. Methods A total of 186 women with a history of GDM were screened for early postpartum AGR at 6-8 weeks after delivery. Those with AGR were given lifestyle intervention therapy and reevaluated in 6-12 months. The demographic, anthropometric, prenatal and delivery data were recorded. The plasma high-sensitivity C-reactive protein (HsCRP) and lipid concentration were measured, and insulin secretion were analyzed. Insulinogenic index △ins30'/△BG30', the homeostasis model assessment index (HOMA)-B, and HOMA-IR were calculated. Multiple regression analysis was performed to identify the risk factors. Results Of the GDM women 28.0% (52/186) had AGR at 6-8 weeks after delivery; 45.2% (17/40) of these AGR women reminded abnormal after 6-12 month lifestyle intervention. Compared to the women who reverted to normal, women with consistent AGR showed significantly lower fasting insulin concentration, lower △ins30'/△BG30' as well as lower HOMA-B. No significant differences in age, body mass index (BMI), waist circumference, blood pressure, lipid level HsCRP and HOMA-IR were observed between the two groups. Pre-pregnancy BMI ≥25 kg/m^2, fasting glucose level ≥5.6 mmol/L and/or 75 g oral glucose tolerance test (OGTT) 2 hours glucose level ≥11.1 mmol/L during pregnancy were predictors for the AGR at 6-8 weeks after delivery. △ins30'/△BG30≤1.05 was a significant risk contributor to the consistent early postpartum AGR. Conclusion There is a high incidence of early postpartum AGR among Chinese woman with prior GDM. Beta-cell dysfunction, rather than insulin resistance or inflammation, is the predominant contributor to the early onset and consistent AGR after delivery.展开更多
A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigati...A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced b展开更多
Transforming growth factor-β1 (TGF-β1) has been identified as one of the most important fibrogenic cytokines associated with Peyronie's disease (PD). The mothers against decapentaplegic homolog 7 (SMAD7) is a...Transforming growth factor-β1 (TGF-β1) has been identified as one of the most important fibrogenic cytokines associated with Peyronie's disease (PD). The mothers against decapentaplegic homolog 7 (SMAD7) is an inhibitory Smad protein that blocks TGF-J3 signaling pathway. The aim of this study was to examine the anti-fibrotic effect of the SMAD7 gene in primary fibroblasts derived from human PD plaques. PD fibroblasts were pretreated with the SMAD7 gene and then stimulated with TGF-β1. Treated fibroblasts were used for Western blotting, fluorescent immunocytochemistry, hydroxyproline determination, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assays. Overexpression of the SMAD7 gene inhibited TGF-β1-induced phosphorylation and nuclear translocation of SMAD2 and SMAD3, transdifferentiation of fibroblasts into myofibroblasts, and quashed TGF-β1-induced production of extracellular matrix protein and hydroxyproline. Overexpression of the SMAD7 gene decreased the expression of cyclin D1 (a positive cell cycle regulator) and induced the expression of poly (ADP-ribose) polymerase 1, which is known to terminate Smad-mediated transcription, in PD fibroblasts. These findings suggest that the blocking of the TGF-β pathway by use of SMAD7 may be a promising therapeutic strategy for the treatment of PD.展开更多
基金the Natural Scientific Foundation of China (NSFC3962526)National High-Technology Project-863 (102-10-01-04)
文摘AIM: To develop and optimize cDNA representational difference analysis (cDNA RDA) method and to identify and clone garlic up-regulated genes in human gastric cancer (HGC) cells. METHODS: We performed cDNA RDA method by using abundant double-stranded cDNA messages provided by two self-constructed cDNA libraries (Allitridi-treated and paternal HGC cell line BGC823 cells cDNA libraries respectively). Bam H I and Xho I restriction sites harbored in the library vector were used to select representations. Northern and Slot blots analyses were employed to identify the obtained difference products. RESULTS: Fragments released from the cDNA library vector after restriction endonuclease digestion acted as good marker indicating the appropriate digestion degree for library DNA. Two novel expressed sequence tags (ESTs) and a recombinant gene were obtained. Slot blots result showed a 8-fold increase of glia-derived nexin/protease nexin 1 (GDN/PN1) gene expression level and 4-fold increase of hepatitis B virus x-interacting protein (XIP) mRNA level in BGC823 cells after Allitridi treatment for 72h. CONCLUSION: Elevated levels of GDN/PN1 and XIP mRNAs induced by Allitridi provide valuable molecular evidence for elucidating the garlic's efficacies against neurodegenerative and inflammatory diseases. Isolation of a recombinant gene and two novel ESTs further show cDNA RDA based on cDNA libraries to be a powerful method with high specificity and reproducibility in cloning differentially expressed genes.
基金This work was supported by the NIH(R01 AI160774,R01 AI123193,and R56 AG071256)the National Multiple Sclerosis Society(RG-1802-30483 to YYW)The figures were created using BioRender.com.
文摘Balanced immunity is pivotal for health and homeostasis.CD4+helper T(Th)cells are central to the balance between immune tolerance and immune rejection.Th cells adopt distinct functions to maintain tolerance and clear pathogens.Dysregulation of Th cell function often leads to maladies,including autoimmunity,inflammatory disease,cancer,and infection.Regulatory T(Treg)and Th17 cells are critical Th cell types involved in immune tolerance,homeostasis,pathogenicity,and pathogen clearance.It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease.Cytokines are instrumental in directing Treg and Th17 cell function.The evolutionarily conserved TGF-β(transforming growth factor-β)cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory,pathogenic,and immune regulatory.How TGF-βsuperfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades.Here,we introduce the fundamental biology of TGF-βsuperfamily signaling,Treg cells,and Th17 cells and discuss in detail how the TGF-βsuperfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
基金financially supported by University Grants Commission,New Delhi
文摘Diabetes mellitus is one of the common metabolic disorders acquiring around 2.8%of the world's population and is anticipated to cross 5.4%by the year 2025.Since long back herbal medicines have been the highly esteemed source of medicine therefore,they have become a growing part of modern,high-tech medicine.In view of the above aspects the present review provides profiles of plants(65 species) with hypoglycaemic properties,available through literature source from various database with proper categorization according to the parts used,mode of reduction in blood glucose(insulinomimetic or insulin secretagugues activity) and active phyloconsliluents having insulin mimetics activity.From the review it was suggested that,plant showing hypoglycemic potential mainly belongs to the family Leguminoseae,Lamiaceae,Liliaceae,Cucurbitaceae, Asteraceae,Moraceae,Rosaceae and Araliaceae.The most active plants are Allium sativum. Gymnema sylvestre,Citrullus colocynthis,Trigonella foenum greacum,Momordica charantia and Ficuts bengalensis.The review describes some new bioactive drugs and isolated compounds from plants such as roseoside,epigallocatechin gallate,beta-pyrazol-1-ylalanine,cinchonain Ib,leucocyandin 3-O-beta-d-galactosyl cellobioside,leucopelargonidin-3- O-alpha-L rhamuoside,glycyrrhetinic acid,dehydrotrametenolic acid,strictinin,isostrictinin,pedunculagin, epicatechin and christinin-A showing significant insulinomimetic and antidiabetic activity with more efficacy than conventional hypoglycaemic agents.Thus,from the review majorly,the antidiabetic activity of medicinal plants is attributed to the presence of polyphenols,flavonoida, terpenoids,coumarins and other constituents which show reduction in blood glucose levels.The review also discusses the management aspect of diabetes mellitus using these plants and their active principles.
基金The study was supported by the grants from the Natural Science Foundation of Heilongjiang Province (No. 200940), the Science Foundation of the Education Department of Heilongjiang Province (No. 11591157), and the Science Foundation of the Health Department of Heilongjiang Province (No. 2012-540).
文摘Background The pathophysiology of type 2 diabetes is progressive pancreatic beta cell failure with consequential reduced insulin secretion. Glucotoxicity results in the reduction of beta cell mass in type 2 diabetes by inducing apoptosis. Autophagy is essential for the maintenance of normal islet architecture and plays a crucial role in maintaining the intracellular insulin content by accelerating the insulin degradation rate in beta cells. Recently more attention has been paid to the effect of autophagy in type 2 diabetes. The regulatory pathway of autophagy in controlling pancreatic beta cells is still not clear. The aim of our study was to evaluate whether liraglutide can inhibit apoptosis and modulate autophagy in vitro in insulinoma cells (INS-1 cells). Methods INS-1 cells were incubated for 24 hours in the presence or absence of high levels of glucose, liraglutide (a long-acting human glucagon-like peptide-1 analogue), or 3-methyadenine (3-MA). Cell viability was measured using the Cell Counting Kit-8 (CCK8) viability assay. Autophagy of INS-1 cells was tested by monodansylcadaverine (MDC) staining, an autophagy fluorescent compound used for the labeling of autophagic vacuoles, and by Western blotting of microtubule-associated protein I light chain 3 (LC3), a biochemical markers of autophagic initiation. Results The viability of INS-1 cells was reduced after treatment with high levels of glucose. The viability of INS-1 cells was reduced and apoptosis was increased when autophagy was inhibited. The viability of INS-1 cells was significantly increased by adding liraglutide to supplement high glucose level medium compared with the cells treated with high glucose levels alone. Conclusions Apoptosis and autophagy were increased in rat INS-1 cells when treated with high level of glucose, and the viability of INS-1 cells was significantly reduced by inhibiting autophagy. Liraglutide protected INS-1 cells from high glucose level-induced apoptosis that is accompanied by a significant increase
基金supported by the Science and Technology Development Fund (Macao SAR)(120015/2019/ASC,0023/2020/AFJ,0035/2020/AGJ)the University of Macao Research Grant (MYRG2022-00248-ICMS)(all to MPMH)。
文摘Blood-brain barrier disruption occurs in the early stages of Alzheimer’s disease.Recent studies indicate a link between blood-brain barrier dysfunction and cognitive decline and might accelerate Alzheimer’s disease progression.Astrocytes are the most abundant glial cells in the central nervous system with important roles in the structural and functional maintenance of the blood-brain barrier.For example,astrocytic cove rage around endothelial cells with perivascular endfeet and secretion of homeostatic soluble factors are two major underlying mechanisms of astrocytic physiological functions.Astrocyte activation is often observed in Alzheimer’s disease patients,with astrocytes expressing a high level of glial fibrillary acid protein detected around amyloid-beta plaque with the elevated phagocytic ability for amyloid-beta.Structural alte rations in Alzheimer’s disease astrocytes including swollen endfeet,somata shrinkage and possess loss contribute to disruption in vascular integrity at capillary and arte rioles levels.In addition,Alzheimer’s disease astrocytes are skewed into proinflammatory and oxidative profiles with increased secretions of vasoactive mediators inducing endothelial junction disruption and immune cell infiltration.In this review,we summarize the findings of existing literature on the relevance of astrocyte alte ration in response to amyloid pathology in the context of blood-brain barrier dysfunction.First,we briefly describe the physiological roles of astrocytes in blood-brain barrier maintenance.Then,we review the clinical evidence of astrocyte pathology in Alzheimer’s disease patients and the preclinical evidence in animal and cellular models.We further discuss the structural changes of blood-brain barrier that correlates with Alzheimer’s disease astrocyte.Finally,we evaluate the roles of soluble factors secreted by Alzheimer’s disease astrocytes,providing potential molecular mechanisms underlying blood-brain barrier modulation.We conclude with a perspective on investigating the
文摘Background: Thymosin beta-4 (TB-4) is considered key roles in tissue development, maintenance and pathological processes. The study aimed to prove TB-4 positive biological function on nucleus pulposus (NP) cell apoptosis and slowing the process of cell aging while increasing the cell proliferation. Methods: TB-4 recombinant adeno-associated virus (AAV) was constructed and induced to human NP cells. Cell of same group were cultured without gene modification as controlled group. Proliferation capacity and cell apoptosis were observed during 6 passages of the cells. Morphology and expression of the TB-4 gene were documented as parameter of cell activity during cell passage. Results: NP cells with TB-4 transfection has normal TB-4 expression and exocytosis. NP cells with TB-4 transfection performed significantly higher cell activity than that at the control group in each generation. TB-4 recombinant AAV-transfected human NP cells also show slower cell aging, lower cell apoptosis and higher cell proliferation than control group. Conclusions: TB-4 can prevent NP cell apoptosis, slow NP cell aging and promote NP cell proliferation. AAV transfection technique was able to highly and stably express TB-4 in human NP cells, which may provide a new pathway for innovation in the treatment of intervertebral disc degenerative diseases.
基金Schuellein Chair Endowment Fund to AS supports PD and Graduate program of Biology supports NGsupported by National Institute of General Medical Sciences(NIGMS)-1 R15 GM124654-01+2 种基金Schuellein Chair Endowment Fund(to AS)STEM Catalyst Grant from University of Daytonstart-up support from UD(to AS)
文摘Alzheimer’s disease(hereafter AD) is a progressive neurodegenerative disorder that affects the central nervous system. There are multiple factors that cause AD, viz., accumulation of extracellular Amyloid-beta 42 plaques, intracellular hyper-phosphorylated Tau tangles, generation of reactive oxygen species due to mitochondrial dysfunction and genetic mutations. The plaques and tau tangles trigger aberrant signaling, which eventually cause cell death of the neurons. As a result, there is shrinkage of brain, cognitive defects, behavioral and psychological problems. To date, there is no direct cure for AD. Thus, scientists have been testing various strategies like screening for the small inhibitor molecule library or natural products that may block or prevent onset of AD. Historically, natural products have been used in many cultures for the treatment of various diseases. The research on natural products have gained importance as the active compounds extracted from them have medicinal values with reduced side effects, and they are bioavailable. The natural products may target the proteins or members of signaling pathways that get altered in specific diseases. Many natural products are being tested in various animal model systems for their role as a potential therapeutic target for AD, and to address questions about how these natural products can rescue AD or other neurodegenerative disorders. Some of these products are in clinical trials and results are promising because of their neuroprotective, anti-inflammatory, antioxidant, anti-amyloidogenic, anticholinesterase activities and easy availability. This review summarizes the use of animal model systems to identify natural products, which may serve as potential therapeutic targets for AD.
基金Supported by Sapienza University of Rome(Progetti di Ricerca Universitaria 2011-2012)
文摘AIM: To analyze the associations of pancreatic fat with other fat depots and β-cell function in pediatric nonalcoholic fatty liver disease(NAFLD).METHODS: We examined 158 overweight/obese children and adolescents, 80 with NAFLD [hepatic fat fraction(HFF) ≥ 5%] and 78 without fatty liver. Visceral adipose tissue(VAT), pancreatic fat fraction(PFF) and HFF were determined by magnetic resonance imaging. Estimates of insulin sensitivity were calculated using the homeostasis model assessment of insulin resistance(HOMA-IR), defined by fasting insulin and fasting glucose and whole-body insulin sensitivity index(WBISI), based on mean values of insulin and glucose obtained from oral glucose tolerance test and the corresponding fasting values. Patients were considered to have prediabetes if they had either:(1) impaired fasting glucose, defined as a fasting glucose level ≥ 100 mg/d L to < 126 mg/d L;(2) impaired glucose tolerance, defined as a 2 h glucose concentration between ≥ 140 mg/d L and < 200 mg/d L; or(3) hemoglobin A1 c value of ≥ 5.7% to < 6.5%.RESULTS: PFF was significantly higher in NAFLD patients compared with subjects without liver involvement. PFF was significantly associated with HFF and VAT, as well as fasting insulin, C peptide, HOMA-IR, and WBISI. The association between PFF and HFF was no longer significant after adjusting for age, gender, Tanner stage, body mass index(BMI)-SD score, and VAT. In multiple regression analysis withWBISI or HOMA-IR as the dependent variables, against the covariates age, gender, Tanner stage, BMI-SD score, VAT, PFF, and HFF, the only variable significantly associated with WBISI(standardized coefficient B,-0.398; P = 0.001) as well as HOMA-IR(0.353; P = 0.003) was HFF. Children with prediabetes had higher PFF and HFF than those without. PFF and HFF were significantly associated with prediabetes after adjustment for clinical variables. When all fat depots where included in the same model, only HFF remained significantly associated with prediabetes(OR = 3.38; 95%CI: 1.10
文摘Background Women with a history of gestational diabetes mellitus (GDM) are at higher risk of future development of diabetes. This study investigated the risk factors associated with early postpartum abnormal glucose regulation (AGR) among Chinese women with a history of GDM. Methods A total of 186 women with a history of GDM were screened for early postpartum AGR at 6-8 weeks after delivery. Those with AGR were given lifestyle intervention therapy and reevaluated in 6-12 months. The demographic, anthropometric, prenatal and delivery data were recorded. The plasma high-sensitivity C-reactive protein (HsCRP) and lipid concentration were measured, and insulin secretion were analyzed. Insulinogenic index △ins30'/△BG30', the homeostasis model assessment index (HOMA)-B, and HOMA-IR were calculated. Multiple regression analysis was performed to identify the risk factors. Results Of the GDM women 28.0% (52/186) had AGR at 6-8 weeks after delivery; 45.2% (17/40) of these AGR women reminded abnormal after 6-12 month lifestyle intervention. Compared to the women who reverted to normal, women with consistent AGR showed significantly lower fasting insulin concentration, lower △ins30'/△BG30' as well as lower HOMA-B. No significant differences in age, body mass index (BMI), waist circumference, blood pressure, lipid level HsCRP and HOMA-IR were observed between the two groups. Pre-pregnancy BMI ≥25 kg/m^2, fasting glucose level ≥5.6 mmol/L and/or 75 g oral glucose tolerance test (OGTT) 2 hours glucose level ≥11.1 mmol/L during pregnancy were predictors for the AGR at 6-8 weeks after delivery. △ins30'/△BG30≤1.05 was a significant risk contributor to the consistent early postpartum AGR. Conclusion There is a high incidence of early postpartum AGR among Chinese woman with prior GDM. Beta-cell dysfunction, rather than insulin resistance or inflammation, is the predominant contributor to the early onset and consistent AGR after delivery.
基金supported by the National Natural Science Foundation of China,No.82001155(to LL)the Natural Science Foundation of Zhejiang Province,No.LY23H090004(to LL)+5 种基金the Natural Science Foundation of Ningbo,No.2023J068(to LL)the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,No.SJLY2023008(to LL)the College Students'Scientific and Technological Innovation Project(Xin Miao Talent Plan)of Zhejiang Province,No.2022R405A045(to CC)the Student ResearchInnovation Program(SRIP)of Ningbo University,Nos.20235RIP1919(to CZ),2023SRIP1938(to YZ)the K.C.Wong Magna Fund in Ningbo University。
文摘A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced b
文摘Transforming growth factor-β1 (TGF-β1) has been identified as one of the most important fibrogenic cytokines associated with Peyronie's disease (PD). The mothers against decapentaplegic homolog 7 (SMAD7) is an inhibitory Smad protein that blocks TGF-J3 signaling pathway. The aim of this study was to examine the anti-fibrotic effect of the SMAD7 gene in primary fibroblasts derived from human PD plaques. PD fibroblasts were pretreated with the SMAD7 gene and then stimulated with TGF-β1. Treated fibroblasts were used for Western blotting, fluorescent immunocytochemistry, hydroxyproline determination, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assays. Overexpression of the SMAD7 gene inhibited TGF-β1-induced phosphorylation and nuclear translocation of SMAD2 and SMAD3, transdifferentiation of fibroblasts into myofibroblasts, and quashed TGF-β1-induced production of extracellular matrix protein and hydroxyproline. Overexpression of the SMAD7 gene decreased the expression of cyclin D1 (a positive cell cycle regulator) and induced the expression of poly (ADP-ribose) polymerase 1, which is known to terminate Smad-mediated transcription, in PD fibroblasts. These findings suggest that the blocking of the TGF-β pathway by use of SMAD7 may be a promising therapeutic strategy for the treatment of PD.