The investigation of discrete solitons in quasi-periodic structure,namely azimuthally modulated Bessel lattices imprinted in photorefractive crystal,is introduced.It is shown that the discrete solitons centralize more...The investigation of discrete solitons in quasi-periodic structure,namely azimuthally modulated Bessel lattices imprinted in photorefractive crystal,is introduced.It is shown that the discrete solitons centralize more energy in the internal layers than the Bessel lattice and moreover,the effect of centralization of discrete solitons in focusing media is stronger than that in defocusing media.The discrete solitons are unstable in some propagation constant windows and they are absolutely stable when the propagation constant is large enough.The stable solitons perform long-distance and periodic oscillation of intensity and shape under the perturbation of intrinsic excitation.展开更多
We address the existence of surface solitons at an interface in a defocusing cubic medium with an imprinted one-dimensional (1D) composite Bessel optical lattice. This setting is composed of two Bessel lattices with...We address the existence of surface solitons at an interface in a defocusing cubic medium with an imprinted one-dimensional (1D) composite Bessel optical lattice. This setting is composed of two Bessel lattices with different orders and different modulation depths, separated beside both sides of an interface. Stability analysis and numerical propagation simulations prove that solitons supported by the model are dynamically stable in the entire domain of their existence. The order of lattice determines the shape of soliton, and the amplitude of soliton depends on the lattice modulation depth. The experimental realization of the scheme is also proposed. Our results may provide another effective way of controlling the shapes of surface solitons and thus their evolutions by introducing a new freedom degree.展开更多
The stability of the ground state of two-component Bose-Einstein condensates (BEGs) loaded into the central well of an axially symmetric Bessel lattices (BLs) potential with attractive or repulsive atoms interacti...The stability of the ground state of two-component Bose-Einstein condensates (BEGs) loaded into the central well of an axially symmetric Bessel lattices (BLs) potential with attractive or repulsive atoms interactions is studied using the time-dependent Gross-Pitaevskii equation (GPE). By using the variational method, we find that stable ground state of two-component BEGs can exist in BLs. The BLs's depth and the intra-species atom interaction play an important role in the stability of ground state. The collapse of two-component BEGs in BLs is also studied and a collapse condition for trapped two-component BEGs is obtained. It is shown that the two-component BEGs exhibit rich collapse dynamics. That is, the two-component BEGs can collapse in the system with both intra- and inter-attractive, or with intra-attractive and inter-repulsive, or with intra-repulsive and inter-attractive atom interactions. Furthermore, the control of the collapse of the two-component BEGs in BLs is discussed in detail. The stability diagram of the ground state in parameter space is obtained. The results show that the collapse of two-component BEGs can be controlled by temporal modulation of the atom interaction.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 61144004)
文摘The investigation of discrete solitons in quasi-periodic structure,namely azimuthally modulated Bessel lattices imprinted in photorefractive crystal,is introduced.It is shown that the discrete solitons centralize more energy in the internal layers than the Bessel lattice and moreover,the effect of centralization of discrete solitons in focusing media is stronger than that in defocusing media.The discrete solitons are unstable in some propagation constant windows and they are absolutely stable when the propagation constant is large enough.The stable solitons perform long-distance and periodic oscillation of intensity and shape under the perturbation of intrinsic excitation.
基金Project supported by the National Natural Science Foundation of China(Grant No10704067)the Scientific Research Foundation of Education Bureau of Zhejiang Province of China(Grant No20060493)
文摘We address the existence of surface solitons at an interface in a defocusing cubic medium with an imprinted one-dimensional (1D) composite Bessel optical lattice. This setting is composed of two Bessel lattices with different orders and different modulation depths, separated beside both sides of an interface. Stability analysis and numerical propagation simulations prove that solitons supported by the model are dynamically stable in the entire domain of their existence. The order of lattice determines the shape of soliton, and the amplitude of soliton depends on the lattice modulation depth. The experimental realization of the scheme is also proposed. Our results may provide another effective way of controlling the shapes of surface solitons and thus their evolutions by introducing a new freedom degree.
基金National Natural Science Foundation of China under Grant Nos.10774120 and 10475066the Natural Science Foundation of Gansu Province under Grant No.3ZS051-A25-013the Creation of Science and Technology of Northwest Normal University,China under Gant No.NWNU-KJCXGC-03-17
文摘The stability of the ground state of two-component Bose-Einstein condensates (BEGs) loaded into the central well of an axially symmetric Bessel lattices (BLs) potential with attractive or repulsive atoms interactions is studied using the time-dependent Gross-Pitaevskii equation (GPE). By using the variational method, we find that stable ground state of two-component BEGs can exist in BLs. The BLs's depth and the intra-species atom interaction play an important role in the stability of ground state. The collapse of two-component BEGs in BLs is also studied and a collapse condition for trapped two-component BEGs is obtained. It is shown that the two-component BEGs exhibit rich collapse dynamics. That is, the two-component BEGs can collapse in the system with both intra- and inter-attractive, or with intra-attractive and inter-repulsive, or with intra-repulsive and inter-attractive atom interactions. Furthermore, the control of the collapse of the two-component BEGs in BLs is discussed in detail. The stability diagram of the ground state in parameter space is obtained. The results show that the collapse of two-component BEGs can be controlled by temporal modulation of the atom interaction.