Abstract This paper deals with a discrete-time batch arrival retrial queue with the server subject to starting failures.Diferent from standard batch arrival retrial queues with starting failures,we assume that each cu...Abstract This paper deals with a discrete-time batch arrival retrial queue with the server subject to starting failures.Diferent from standard batch arrival retrial queues with starting failures,we assume that each customer after service either immediately returns to the orbit for another service with probabilityθor leaves the system forever with probability 1θ(0≤θ〈1).On the other hand,if the server is started unsuccessfully by a customer(external or repeated),the server is sent to repair immediately and the customer either joins the orbit with probability q or leaves the system forever with probability 1 q(0≤q〈1).Firstly,we introduce an embedded Markov chain and obtain the necessary and sufcient condition for ergodicity of this embedded Markov chain.Secondly,we derive the steady-state joint distribution of the server state and the number of customers in the system/orbit at arbitrary time.We also derive a stochastic decomposition law.In the special case of individual arrivals,we develop recursive formulae for calculating the steady-state distribution of the orbit size.Besides,we investigate the relation between our discrete-time system and its continuous counterpart.Finally,some numerical examples show the influence of the parameters on the mean orbit size.展开更多
This paper studies the stabilization problem of an Euler-Bernoulli beam with a tip mass,which undergoes unknown but uniform bounded disturbance at tip mass. Here the nonlinear feedback control law is used to cancel th...This paper studies the stabilization problem of an Euler-Bernoulli beam with a tip mass,which undergoes unknown but uniform bounded disturbance at tip mass. Here the nonlinear feedback control law is used to cancel the effects of the external disturbances. For the controlled nonlinear system,the authors prove the well-posedness by the maximal monotone operator theory and the variational principle. Further the authors prove that the controlled nonlinear system is exponential stable by constructing a suitable Lyapunov function. Finally, some numerical simulations are given to support these results.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.11171019,11171179,and 11271373)Program for New Century Excellent Talents in University(No.NCET-11-0568)+2 种基金the Fundamental Research Funds for the Central Universities(No.2011JBZ012)Tianyuan Fund for Mathematics(Nos.11226200 and 11226251)Program for Science Research of Fuyang Normal College(2013FSKJ01ZD)
文摘Abstract This paper deals with a discrete-time batch arrival retrial queue with the server subject to starting failures.Diferent from standard batch arrival retrial queues with starting failures,we assume that each customer after service either immediately returns to the orbit for another service with probabilityθor leaves the system forever with probability 1θ(0≤θ〈1).On the other hand,if the server is started unsuccessfully by a customer(external or repeated),the server is sent to repair immediately and the customer either joins the orbit with probability q or leaves the system forever with probability 1 q(0≤q〈1).Firstly,we introduce an embedded Markov chain and obtain the necessary and sufcient condition for ergodicity of this embedded Markov chain.Secondly,we derive the steady-state joint distribution of the server state and the number of customers in the system/orbit at arbitrary time.We also derive a stochastic decomposition law.In the special case of individual arrivals,we develop recursive formulae for calculating the steady-state distribution of the orbit size.Besides,we investigate the relation between our discrete-time system and its continuous counterpart.Finally,some numerical examples show the influence of the parameters on the mean orbit size.
基金supported by the Natural Science Foundation of China under Grant Nos.61174080,61573252,and 61503275
文摘This paper studies the stabilization problem of an Euler-Bernoulli beam with a tip mass,which undergoes unknown but uniform bounded disturbance at tip mass. Here the nonlinear feedback control law is used to cancel the effects of the external disturbances. For the controlled nonlinear system,the authors prove the well-posedness by the maximal monotone operator theory and the variational principle. Further the authors prove that the controlled nonlinear system is exponential stable by constructing a suitable Lyapunov function. Finally, some numerical simulations are given to support these results.