Flexible solid-state battery has several unique characteristics including high flexibility,easy portability,and high safety,which may have broad application prospects in new technology products such as rollup displays...Flexible solid-state battery has several unique characteristics including high flexibility,easy portability,and high safety,which may have broad application prospects in new technology products such as rollup displays,power implantable medical devices,and wearable equipments.The interfacial mechanical and electrochemical problems caused by bending deformation,resulting in the battery damage and failure,are particularly interesting.Herein,a fully coupled electro-chemo-mechanical model is developed based on the actual solid-state battery structure.Concentration-dependent material parameters,stress-dependent diffusion,and potential shift are considered.According to four bending forms(k=8/mm,0/mm,-8/mm,and free),the results show that the negative curvature bending is beneficial to reducing the plastic strain during charging/discharging,while the positive curvature is detrimental.However,with respect to the electrochemical performance,the negative curvature bending creates a negative potential shift,which causes the battery to reach the cut-off voltage earlier and results in capacity loss.These results enlighten us that suitable electrode materials and charging strategy can be tailored to reduce plastic deformation and improve battery capacity for different forms of battery bending.展开更多
The tungsten-inert-gas (TIG) arc welding experiments of cemented carbide YG30 and steel 45 were carried out using the Ni-Fe-C filling alloys. The eta phases and mechanical properties of welded joints were analyzed by ...The tungsten-inert-gas (TIG) arc welding experiments of cemented carbide YG30 and steel 45 were carried out using the Ni-Fe-C filling alloys. The eta phases and mechanical properties of welded joints were analyzed by means of scanning electronic microscope (SEM), transmission electronic microscope (TEM) coupled with selected diffraction, electronic probe microanalysis and bending strength methods. The experimental results show that the chemical composition of the filling alloys affects eta phase formation. When the carbon and nickel contents in filling alloys are 0.61 wt% and 55.29 wt%, respectively, no eta phases form. And the joint bending strength is the highest to 1.352 GPa. But if they are 0.01wt% and 55.38wt%, the eta phases are formed at the boundaries of the cemented carbide and the weld, and the thickness of eta phase layer is about 110 micrometers. And the joint bending strength is low. Usually, these eta phases are anomalously granular, and easy to accumulate at the boundaries between cemented carbides and the weld. They are multiple M_6C rich in tungsten and iron.展开更多
In this study,we propose a novel and simple exact semi-analytical model for superelastic Shape Memory Alloy(SMA)wire reinforced composites subjected to bending loads.In order to study the mechanical response of the co...In this study,we propose a novel and simple exact semi-analytical model for superelastic Shape Memory Alloy(SMA)wire reinforced composites subjected to bending loads.In order to study the mechanical response of the composite during loading/unloading,a Representative Volume Element(RVE)is extracted to examine the bending response of the composite.Analytical moment–curvature,and shear force-shear strain relations are derived based on a 3-Dimensional(3 D)thermomechanical SMA model and Timoshenko beam theory.The composite Simpson’s rule is adopted to numerically solve the exact analytical moment–curvature and shear force-shear strain relationships.Results including the moment–curvature response,axial stress distribution along the vertical and longitudinal directions,martensite volume fraction,and the tip deflection are reported and validated against 3 D finite element simulations.The influence of temperature,martensite volume fraction distribution,and matrix stiffness on the mechanical performance of the composite is also investigated.In particular,the composite is found to behave superelastically under certain conditions of temperature,SMA volume fraction,and elastic stiffness of the matrix.Such behavior is advantageous in applications requiring large recoverable strains or high energy dissipation density.展开更多
Bending-induced phase transition in monolayer black phosphorus is investigated through first principles calculations.By wrapping the layer into nanotubes along armchair and zigzag directions with different curvatures,...Bending-induced phase transition in monolayer black phosphorus is investigated through first principles calculations.By wrapping the layer into nanotubes along armchair and zigzag directions with different curvatures, it is found that phase transitions of the tubes occur when radius of curvature is smaller than 5 in bending along the zigzag direction, while the tubes remain stable along the armchair direction. Small zigzag tubes with odd numbered monolayer unit cells tend to transfer toward armchair-like phases, but the tubes with even numbered monolayer unit cells transfer into new complex bonding structures. The mechanism for the bending-induced phase transition is revealed by the comprehensive analyses of the bending strain energies, electron density distributions, and band structures. The results show significant anisotropic bending stability of black phosphorus and should be helpful for its mechanical cleavage fabrication in large size.展开更多
基金the National Natural Science Foundation of China(No.11902144)the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China(No.KYCX201074)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.19KJB430022)the Guizhou Provincial General Undergraduate Higher Education Technology Supporting Talent Support Program(No.KY(2018)043)。
文摘Flexible solid-state battery has several unique characteristics including high flexibility,easy portability,and high safety,which may have broad application prospects in new technology products such as rollup displays,power implantable medical devices,and wearable equipments.The interfacial mechanical and electrochemical problems caused by bending deformation,resulting in the battery damage and failure,are particularly interesting.Herein,a fully coupled electro-chemo-mechanical model is developed based on the actual solid-state battery structure.Concentration-dependent material parameters,stress-dependent diffusion,and potential shift are considered.According to four bending forms(k=8/mm,0/mm,-8/mm,and free),the results show that the negative curvature bending is beneficial to reducing the plastic strain during charging/discharging,while the positive curvature is detrimental.However,with respect to the electrochemical performance,the negative curvature bending creates a negative potential shift,which causes the battery to reach the cut-off voltage earlier and results in capacity loss.These results enlighten us that suitable electrode materials and charging strategy can be tailored to reduce plastic deformation and improve battery capacity for different forms of battery bending.
基金financial supports from plan program of Dalian(grants No.2001145)
文摘The tungsten-inert-gas (TIG) arc welding experiments of cemented carbide YG30 and steel 45 were carried out using the Ni-Fe-C filling alloys. The eta phases and mechanical properties of welded joints were analyzed by means of scanning electronic microscope (SEM), transmission electronic microscope (TEM) coupled with selected diffraction, electronic probe microanalysis and bending strength methods. The experimental results show that the chemical composition of the filling alloys affects eta phase formation. When the carbon and nickel contents in filling alloys are 0.61 wt% and 55.29 wt%, respectively, no eta phases form. And the joint bending strength is the highest to 1.352 GPa. But if they are 0.01wt% and 55.38wt%, the eta phases are formed at the boundaries of the cemented carbide and the weld, and the thickness of eta phase layer is about 110 micrometers. And the joint bending strength is low. Usually, these eta phases are anomalously granular, and easy to accumulate at the boundaries between cemented carbides and the weld. They are multiple M_6C rich in tungsten and iron.
基金the financial support of Khalifa University through research grant No.CIRA 2019024。
文摘In this study,we propose a novel and simple exact semi-analytical model for superelastic Shape Memory Alloy(SMA)wire reinforced composites subjected to bending loads.In order to study the mechanical response of the composite during loading/unloading,a Representative Volume Element(RVE)is extracted to examine the bending response of the composite.Analytical moment–curvature,and shear force-shear strain relations are derived based on a 3-Dimensional(3 D)thermomechanical SMA model and Timoshenko beam theory.The composite Simpson’s rule is adopted to numerically solve the exact analytical moment–curvature and shear force-shear strain relationships.Results including the moment–curvature response,axial stress distribution along the vertical and longitudinal directions,martensite volume fraction,and the tip deflection are reported and validated against 3 D finite element simulations.The influence of temperature,martensite volume fraction distribution,and matrix stiffness on the mechanical performance of the composite is also investigated.In particular,the composite is found to behave superelastically under certain conditions of temperature,SMA volume fraction,and elastic stiffness of the matrix.Such behavior is advantageous in applications requiring large recoverable strains or high energy dissipation density.
基金supported by the National Natural Science Foundation of China(Grant Nos.11021262,11172303,and 11132011)the National Basic Research Program of China(Grant No.2012CB937500)
文摘Bending-induced phase transition in monolayer black phosphorus is investigated through first principles calculations.By wrapping the layer into nanotubes along armchair and zigzag directions with different curvatures, it is found that phase transitions of the tubes occur when radius of curvature is smaller than 5 in bending along the zigzag direction, while the tubes remain stable along the armchair direction. Small zigzag tubes with odd numbered monolayer unit cells tend to transfer toward armchair-like phases, but the tubes with even numbered monolayer unit cells transfer into new complex bonding structures. The mechanism for the bending-induced phase transition is revealed by the comprehensive analyses of the bending strain energies, electron density distributions, and band structures. The results show significant anisotropic bending stability of black phosphorus and should be helpful for its mechanical cleavage fabrication in large size.