At the event horizon and the cosmological horizon of the stationary axisymmetric Kerr-Newman black hole in the de Sitter space-time background, the tunneling rate of the charged particles is relevant with Bekenstein-H...At the event horizon and the cosmological horizon of the stationary axisymmetric Kerr-Newman black hole in the de Sitter space-time background, the tunneling rate of the charged particles is relevant with Bekenstein-Hawking entropy and the real radiation spectrum is not strictly pure thermal, but consistent with the underlying unitary theory in quantum mechanics. This is a feasible interpretation for the paradox of the black hole information loss. Taking the self-gravitation action, energy conservation, angular momentum conservation and charge conservation into account, the derived radiation spectrum is a correct amendment to the Hawking pure thermal spectrum.展开更多
Extending Parikh's semi-classical quantum tunnelling model, this paper has studied the Hawking radiation of the charged particle via tunnelling from the horizon of the axisymmetric Sen black hole. Different from the ...Extending Parikh's semi-classical quantum tunnelling model, this paper has studied the Hawking radiation of the charged particle via tunnelling from the horizon of the axisymmetric Sen black hole. Different from the uncharged massless particle, the geodesics of the charged massive particle tunnelling from the horizon is not light-like. The derived result supports Parikh's opinion and provides a correct modification to Hawking strictly thermal spectrum developed by the fixed background space-time and not considering the energy conservation and the self-gravitation interaction.展开更多
Hawking radiation can be viewed as a process of quantum tunneling near the black hole horizon. When a particle with angular momentum L≠ω a tunnels across the event horizon of Kerr or Kerr-Newman black hole, the angu...Hawking radiation can be viewed as a process of quantum tunneling near the black hole horizon. When a particle with angular momentum L≠ω a tunnels across the event horizon of Kerr or Kerr-Newman black hole, the angular momentum per unit mass a should be changed. The emission rate of the massless particles under this general case is calculated, and the result is consistent with an underlying unitary theory.展开更多
Applying Parikh's quantum tunnelling method, this paper has studied the quantum tunnelling radiation of Schwarzschild de Sitter black hole with a global monopole. The result shows that the tunnelling rates at the eve...Applying Parikh's quantum tunnelling method, this paper has studied the quantum tunnelling radiation of Schwarzschild de Sitter black hole with a global monopole. The result shows that the tunnelling rates at the event horizon and the cosmological horizon are related to Bekenstein-Hawking entropy and the derived radiation spectrum is not precisely thermal when considering energy conservation and self-gravitation interaction.展开更多
Based on the 4-dimensional black hole solution of f(R) theory coupled to a nonlinear Maxwell field, we calculate the interior volume of a charged f(R) black hole using the method proposed by Christodoulou and Rovelli....Based on the 4-dimensional black hole solution of f(R) theory coupled to a nonlinear Maxwell field, we calculate the interior volume of a charged f(R) black hole using the method proposed by Christodoulou and Rovelli.Considering massless scalar field in the interior volume and Hawking radiation carrying only energy, we calculate the entropy of the scalar field inside a charged f(R) black hole and investigate the evolution of the entropy under Hawking radiation. In the meantime, the evolution of the Bekenstein-Hawking entropy under Hawking radiation has also been calculated. Based on these results, the proportional relation is obtained between the evolution of the scalar field entropy and the evolution of Bekenstein-Hawking entropy under Hawking radiation. According to the result, we investigate and discuss how the modified coefficient b in f(R) gravity theory affects the evolution relation between the two types of entropy. It is shown that the radiation rate for Hawking radiation of a charged f(R) black hole can increase with the modified coefficient b.展开更多
This paper extends Parikh-Wilzcek's recent work, which treats the Hawking radiation as a semi-classical tunnelling process from the event horizon of four dimensional Schwarzshild and Reissner-Nordstrom black holes, t...This paper extends Parikh-Wilzcek's recent work, which treats the Hawking radiation as a semi-classical tunnelling process from the event horizon of four dimensional Schwarzshild and Reissner-Nordstrom black holes, to that of arbitrarily dimensional Reissner-Nordstrom de Sitter black hole. The result shows that the tunnelling rate is related to the change of Bekenstein-Hawking entropy and the factually radiant spectrum is no longer precisely thermal after taking the dynamical black hole background and energy conservation into account, but is consistent with the underlying unitary theory and then satisfies the first law of the black hole thermodynamics. Meanwhile, in Parikh-Wilzcek's framework, this paper points out that the information conservation is only suitable for the reversible process but in highly unstable evaporating black hole (irreversible process) the information loss is possible.展开更多
This article is an application of the theory of discrete spaces to cosmology. Its conclusions are necessarily speculative. An interesting aspect is that it gives possible solutions to many pending problems within a un...This article is an application of the theory of discrete spaces to cosmology. Its conclusions are necessarily speculative. An interesting aspect is that it gives possible solutions to many pending problems within a unique framework. Let us cite a scenario for the Big-Bang that avoids any initial mathematical singularity, an interpretation of dark matter that does not involve any hadronic matter, a description of the formation of stellar and galactic black holes and, for the later, a description of quasars, their characteristics and their source of energy. Finally dark energy is also given an interpretation through modifications of the laws of gravity.展开更多
Recently,based on the study of black hole Hawking radiation with the tunnel effect method,we found that the radiation spectrum of the black hole is not a strict pure thermal spectrum. It is a very interesting problem ...Recently,based on the study of black hole Hawking radiation with the tunnel effect method,we found that the radiation spectrum of the black hole is not a strict pure thermal spectrum. It is a very interesting problem to determine how the departure of the black hole radiation spectrum from the pure thermal spectrum affects entropy. We calculate the partition function by the energy spectrum obtained using tunnel effect. Using the relation between the partition function and entropy,we derive the correction value to Bekenstein-Hawking entropy of the charged black hole. Fur-thermore,we obtain the conditions that various thermodynamic quantities must satisfy,when phase transition of the charged black hole occurs.展开更多
基金the Foundation for Fundamental Research Projects of Sichuan Province(Grant No. 05JY029-092)
文摘At the event horizon and the cosmological horizon of the stationary axisymmetric Kerr-Newman black hole in the de Sitter space-time background, the tunneling rate of the charged particles is relevant with Bekenstein-Hawking entropy and the real radiation spectrum is not strictly pure thermal, but consistent with the underlying unitary theory in quantum mechanics. This is a feasible interpretation for the paradox of the black hole information loss. Taking the self-gravitation action, energy conservation, angular momentum conservation and charge conservation into account, the derived radiation spectrum is a correct amendment to the Hawking pure thermal spectrum.
文摘Extending Parikh's semi-classical quantum tunnelling model, this paper has studied the Hawking radiation of the charged particle via tunnelling from the horizon of the axisymmetric Sen black hole. Different from the uncharged massless particle, the geodesics of the charged massive particle tunnelling from the horizon is not light-like. The derived result supports Parikh's opinion and provides a correct modification to Hawking strictly thermal spectrum developed by the fixed background space-time and not considering the energy conservation and the self-gravitation interaction.
基金the National Natural Science Foundation of China (Grant No. 10773002)the National Basic Research Program of China (Grant No. 2003CB716302)
文摘Hawking radiation can be viewed as a process of quantum tunneling near the black hole horizon. When a particle with angular momentum L≠ω a tunnels across the event horizon of Kerr or Kerr-Newman black hole, the angular momentum per unit mass a should be changed. The emission rate of the massless particles under this general case is calculated, and the result is consistent with an underlying unitary theory.
基金Proiect suooorted by the National Natural Science Foundation of China (Grant No 10347008).
文摘Applying Parikh's quantum tunnelling method, this paper has studied the quantum tunnelling radiation of Schwarzschild de Sitter black hole with a global monopole. The result shows that the tunnelling rates at the event horizon and the cosmological horizon are related to Bekenstein-Hawking entropy and the derived radiation spectrum is not precisely thermal when considering energy conservation and self-gravitation interaction.
基金Supported by the National Natural Science Foundation of China under Grant No.11235003
文摘Based on the 4-dimensional black hole solution of f(R) theory coupled to a nonlinear Maxwell field, we calculate the interior volume of a charged f(R) black hole using the method proposed by Christodoulou and Rovelli.Considering massless scalar field in the interior volume and Hawking radiation carrying only energy, we calculate the entropy of the scalar field inside a charged f(R) black hole and investigate the evolution of the entropy under Hawking radiation. In the meantime, the evolution of the Bekenstein-Hawking entropy under Hawking radiation has also been calculated. Based on these results, the proportional relation is obtained between the evolution of the scalar field entropy and the evolution of Bekenstein-Hawking entropy under Hawking radiation. According to the result, we investigate and discuss how the modified coefficient b in f(R) gravity theory affects the evolution relation between the two types of entropy. It is shown that the radiation rate for Hawking radiation of a charged f(R) black hole can increase with the modified coefficient b.
文摘This paper extends Parikh-Wilzcek's recent work, which treats the Hawking radiation as a semi-classical tunnelling process from the event horizon of four dimensional Schwarzshild and Reissner-Nordstrom black holes, to that of arbitrarily dimensional Reissner-Nordstrom de Sitter black hole. The result shows that the tunnelling rate is related to the change of Bekenstein-Hawking entropy and the factually radiant spectrum is no longer precisely thermal after taking the dynamical black hole background and energy conservation into account, but is consistent with the underlying unitary theory and then satisfies the first law of the black hole thermodynamics. Meanwhile, in Parikh-Wilzcek's framework, this paper points out that the information conservation is only suitable for the reversible process but in highly unstable evaporating black hole (irreversible process) the information loss is possible.
文摘This article is an application of the theory of discrete spaces to cosmology. Its conclusions are necessarily speculative. An interesting aspect is that it gives possible solutions to many pending problems within a unique framework. Let us cite a scenario for the Big-Bang that avoids any initial mathematical singularity, an interpretation of dark matter that does not involve any hadronic matter, a description of the formation of stellar and galactic black holes and, for the later, a description of quasars, their characteristics and their source of energy. Finally dark energy is also given an interpretation through modifications of the laws of gravity.
基金the Natural Science Foundation of Shanxi Province of China (Grant No 2006011012)the Doctoral Sustentation Fund of Shanxi Datong University of China
文摘Recently,based on the study of black hole Hawking radiation with the tunnel effect method,we found that the radiation spectrum of the black hole is not a strict pure thermal spectrum. It is a very interesting problem to determine how the departure of the black hole radiation spectrum from the pure thermal spectrum affects entropy. We calculate the partition function by the energy spectrum obtained using tunnel effect. Using the relation between the partition function and entropy,we derive the correction value to Bekenstein-Hawking entropy of the charged black hole. Fur-thermore,we obtain the conditions that various thermodynamic quantities must satisfy,when phase transition of the charged black hole occurs.