期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
CMP过程多变量免疫预测R2R控制方法
1
作者 王亮 胡静涛 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第11期2586-2593,共8页
为了解决多输入多输出和产品质量不易在线测量的化学机械研磨(chemical mechanical polishing,CMP)过程R2R(run-to-run)控制的难题,提出了一种基于贝叶斯最小二乘支持向量机(Bayes least squares support vector machine,BLS-SVM)预测... 为了解决多输入多输出和产品质量不易在线测量的化学机械研磨(chemical mechanical polishing,CMP)过程R2R(run-to-run)控制的难题,提出了一种基于贝叶斯最小二乘支持向量机(Bayes least squares support vector machine,BLS-SVM)预测模型和克隆选择免疫多目标滚动优化算法的CMP过程多变量R2R预测控制器BSVMPR2R。由LS-SVM和贝叶斯证据框架(Bayes evidence framework,BEF)方法分别构建材料去除率(material removal rate,MRR)和晶圆内非均匀度(within-wafer nonuniformity,WIWNU)的BLS-SVM预测模型,解决了线性预测模型的失配问题;通过预测误差对后续批次过程扰动和漂移进行在线估计实现反馈校正,提高了预测模型精度;将多变量控制问题转化为基于2个预测模型的多目标优化问题,由克隆选择免疫多目标滚动优化算法求解最优控制律提高了控制精度。仿真结果表明,BSVMPR2R控制器的性能优于双指数加权移动平均(double exponential weighted moving average,dEWMA)多变量控制器,抑制了CMP过程扰动和漂移的影响,显著降低了MRR和WIWNU的均方根误差。 展开更多
关键词 化学机械研磨 R2R控制 最小二乘支持向量机 贝叶斯证据框架 克隆选择 预测控制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部