In October 2003, a new bacterial disease with symptoms similar to those caused by Xanthomonas axonopodis pv. poinsettiicola was observed on poinsettia leaves at a flower nursery in Zhejiang Province of China. Three Xa...In October 2003, a new bacterial disease with symptoms similar to those caused by Xanthomonas axonopodis pv. poinsettiicola was observed on poinsettia leaves at a flower nursery in Zhejiang Province of China. Three Xanthomonas strains were isolated from infected plants and classified as X. axonopodis. They were differentiated from the pathotype strain LMG849 of X. axonopodis pv. poinsettiicola causing bacterial leaf spot of poinsettia by comparison of pathogenicity, substrate utilization and BOX-PCR genomic fingerprints.展开更多
Bacterial spot(BS)is a severe bacterial disease induced by Xanthomonas campestris pv.vesicatoria(Xcv),a pathogen that causes serious damage to pepper growth and yield.It is therefore important to study the mechanisms ...Bacterial spot(BS)is a severe bacterial disease induced by Xanthomonas campestris pv.vesicatoria(Xcv),a pathogen that causes serious damage to pepper growth and yield.It is therefore important to study the mechanisms of pepper resistance to Xcv and to breed and promote Xcvresistant pepper varieties.However,studies of the responses to Xcv infection in peppers at the protein level are limited.Here,we examined Xcv-induced proteomic changes in leaves of the BS susceptible bell pepper ECW and the resistant bell pepper VI037601 using the isobaric tags for relative and absolute quantitation(iTRAQ)-based protein labeling technology.A total of 6,120 distinct proteins were identified,and there were 1,289 significantly differentially accumulated proteins(DAPs)in ECW and VI037601 leaves after Xcv inoculation.Among these,339(250up-and 89 down-regulated)and 479(300 up-and 179 down-regulated)DAPs were specifically identified in ECW and VI037601,respectively,with 459(364 up-and 95 down-regulated)similarly expressed DAPs being shared by ECW and VI037601.Based on bioinformatics analysis,many defense-associated proteins were identified as up-regulated in ECW and VI037601,especially the proteins involved in plant-pathogen interaction,phenylpropanoid biosynthesis,protein processing in the endoplasmic reticulum,and MAPK signaling pathway-plant.Moreover,we evaluated transcript levels of six differentially expressed genes from the iTRAQ results by q RT-PCR.The analysis revealed transcriptional changes that were consistent with the changes at the protein level.This study will provide a valuable resource for understanding the molecular basis of pepper resistance to Xcv infection and for improving the disease resistance of pepper cultivars.展开更多
In the agricultural industry,rice infections have resulted in significant productivity and economic losses.The infections must be recognized early on to regulate and mitigate the effects of the attacks.Early diagnosis...In the agricultural industry,rice infections have resulted in significant productivity and economic losses.The infections must be recognized early on to regulate and mitigate the effects of the attacks.Early diagnosis of disease severity effects or incidence can preserve production from quantitative and qualitative losses,reduce pesticide use,and boost ta country’s economy.Assessing the health of a rice plant through its leaves is usually done as a manual ocular exercise.In this manuscript,three rice plant diseases:Bacterial leaf blight,Brown spot,and Leaf smut,were identified using the Alexnet Model.Our research shows that any reduction in rice plants will have a significant beneficial impact on alleviating global food hunger by increasing supply,lowering prices,and reducing production's environmental impact that affects the economy of any country.Farmers would be able to get more exact and faster results with this technology,allowing them to administer the most acceptable treatment available.By Using Alex Net,the proposed approach achieved a 99.0%accuracy rate for diagnosing rice leaves disease.展开更多
Soybean bacterial spot disease caused by Pseudomonas syringae pv.Glycinea which is a bacterial disease seriously affects soybean yield.Ten soybean germplasms and recombinant inbred lines(RILs)population were used to i...Soybean bacterial spot disease caused by Pseudomonas syringae pv.Glycinea which is a bacterial disease seriously affects soybean yield.Ten soybean germplasms and recombinant inbred lines(RILs)population were used to identify the resistant trait after inoculated with P.sg(P.sgneau001)in this study.High-density genetic mapping was obtained by specific length amplified fragment sequencing(SLAF-seq)of 149 RILs population which was derived from the crossing between Charleston and Dongnong594.The results indicated that 10 germplasm resources had four resistant germplasms included highly resistant cultivar Charleston,four susceptible varieties included Dongnong594 and two moderately resistant cultivars.Five quantitative trait locus(QTLs)were detected in RILs population by the composite interval mapping(CIM)method,and located on Linkage Group(LG)D1b(chromosome two),LG C2(chromosome six)and LG H(chromosome 12),respectively.LOD scores ranged from 2.68 to 4.95 and the phenotypic variation percentage was from 6%to 11%.Six candidate genes were detected,according to the result of gene annotation information.Four of them had relationship with protein kinase activity,protein phosphorylation and leucine rich repeat(LRR)transmembrane protein,which had high expression after inoculated with P.sg by qRT-PCR.展开更多
Bacterial spot caused by Xanthomonas arboricola pv. pruni (Xap) is considered as a major problem in peach orchards. Copper and antibiotics are used to control, and biocontrol should be a new alternative with low envir...Bacterial spot caused by Xanthomonas arboricola pv. pruni (Xap) is considered as a major problem in peach orchards. Copper and antibiotics are used to control, and biocontrol should be a new alternative with low environment impact. The objective was evaluated by the antibiotic activity of the metabolite produced by Pseudomonas aeruginosa LV strain. The free cells supernatant was fractionated with a serial organic solvent with crescent polarity and a dichloromethane phase was concentrated and lyophilised, and after was fractionated using vacuum liquid chromatography. The antibiotic activity of the F3 fraction containing an organometallic compound was tested on Xap in vitro and in a greenhouse conditions. Plants were sprayed with F3 before or after Xap infection and the results showed changes in exopolysaccharides and cell morphology. The F3 concentration of 450 μg·mL-1 was more effective. The results showed that F3 fraction could be a new alternative to control bacterial spot.展开更多
基金Project supported by the National Natural Science Foundation of China (No.30370951) and China-Belgium Flemish Government
文摘In October 2003, a new bacterial disease with symptoms similar to those caused by Xanthomonas axonopodis pv. poinsettiicola was observed on poinsettia leaves at a flower nursery in Zhejiang Province of China. Three Xanthomonas strains were isolated from infected plants and classified as X. axonopodis. They were differentiated from the pathotype strain LMG849 of X. axonopodis pv. poinsettiicola causing bacterial leaf spot of poinsettia by comparison of pathogenicity, substrate utilization and BOX-PCR genomic fingerprints.
基金supported by grants of the National Key R&D Program of China (Grants Nos.2016YFE0205500 and 2017YFD0101903)the earmarked fund for China Agriculture Research System (Grant No.CARS-23-G28)+2 种基金the China Postdoctoral Science Foundation (Grant No.2017M620305)Natural Science Foundation of Hubei Province (Grant No.2020CFA010)Youth Fund of Hubei Academy of Agricultural Sciences (Grant No.2021NKYJJ04)。
文摘Bacterial spot(BS)is a severe bacterial disease induced by Xanthomonas campestris pv.vesicatoria(Xcv),a pathogen that causes serious damage to pepper growth and yield.It is therefore important to study the mechanisms of pepper resistance to Xcv and to breed and promote Xcvresistant pepper varieties.However,studies of the responses to Xcv infection in peppers at the protein level are limited.Here,we examined Xcv-induced proteomic changes in leaves of the BS susceptible bell pepper ECW and the resistant bell pepper VI037601 using the isobaric tags for relative and absolute quantitation(iTRAQ)-based protein labeling technology.A total of 6,120 distinct proteins were identified,and there were 1,289 significantly differentially accumulated proteins(DAPs)in ECW and VI037601 leaves after Xcv inoculation.Among these,339(250up-and 89 down-regulated)and 479(300 up-and 179 down-regulated)DAPs were specifically identified in ECW and VI037601,respectively,with 459(364 up-and 95 down-regulated)similarly expressed DAPs being shared by ECW and VI037601.Based on bioinformatics analysis,many defense-associated proteins were identified as up-regulated in ECW and VI037601,especially the proteins involved in plant-pathogen interaction,phenylpropanoid biosynthesis,protein processing in the endoplasmic reticulum,and MAPK signaling pathway-plant.Moreover,we evaluated transcript levels of six differentially expressed genes from the iTRAQ results by q RT-PCR.The analysis revealed transcriptional changes that were consistent with the changes at the protein level.This study will provide a valuable resource for understanding the molecular basis of pepper resistance to Xcv infection and for improving the disease resistance of pepper cultivars.
文摘In the agricultural industry,rice infections have resulted in significant productivity and economic losses.The infections must be recognized early on to regulate and mitigate the effects of the attacks.Early diagnosis of disease severity effects or incidence can preserve production from quantitative and qualitative losses,reduce pesticide use,and boost ta country’s economy.Assessing the health of a rice plant through its leaves is usually done as a manual ocular exercise.In this manuscript,three rice plant diseases:Bacterial leaf blight,Brown spot,and Leaf smut,were identified using the Alexnet Model.Our research shows that any reduction in rice plants will have a significant beneficial impact on alleviating global food hunger by increasing supply,lowering prices,and reducing production's environmental impact that affects the economy of any country.Farmers would be able to get more exact and faster results with this technology,allowing them to administer the most acceptable treatment available.By Using Alex Net,the proposed approach achieved a 99.0%accuracy rate for diagnosing rice leaves disease.
基金Supported by the National Key R&D Program of China(2016YFD0100201)Science Foundation for Distinguished Young Scholars of Heilongjiang Province(JC2016004)Harbin Science Technology Project(2015RQXXJ018)。
文摘Soybean bacterial spot disease caused by Pseudomonas syringae pv.Glycinea which is a bacterial disease seriously affects soybean yield.Ten soybean germplasms and recombinant inbred lines(RILs)population were used to identify the resistant trait after inoculated with P.sg(P.sgneau001)in this study.High-density genetic mapping was obtained by specific length amplified fragment sequencing(SLAF-seq)of 149 RILs population which was derived from the crossing between Charleston and Dongnong594.The results indicated that 10 germplasm resources had four resistant germplasms included highly resistant cultivar Charleston,four susceptible varieties included Dongnong594 and two moderately resistant cultivars.Five quantitative trait locus(QTLs)were detected in RILs population by the composite interval mapping(CIM)method,and located on Linkage Group(LG)D1b(chromosome two),LG C2(chromosome six)and LG H(chromosome 12),respectively.LOD scores ranged from 2.68 to 4.95 and the phenotypic variation percentage was from 6%to 11%.Six candidate genes were detected,according to the result of gene annotation information.Four of them had relationship with protein kinase activity,protein phosphorylation and leucine rich repeat(LRR)transmembrane protein,which had high expression after inoculated with P.sg by qRT-PCR.
文摘Bacterial spot caused by Xanthomonas arboricola pv. pruni (Xap) is considered as a major problem in peach orchards. Copper and antibiotics are used to control, and biocontrol should be a new alternative with low environment impact. The objective was evaluated by the antibiotic activity of the metabolite produced by Pseudomonas aeruginosa LV strain. The free cells supernatant was fractionated with a serial organic solvent with crescent polarity and a dichloromethane phase was concentrated and lyophilised, and after was fractionated using vacuum liquid chromatography. The antibiotic activity of the F3 fraction containing an organometallic compound was tested on Xap in vitro and in a greenhouse conditions. Plants were sprayed with F3 before or after Xap infection and the results showed changes in exopolysaccharides and cell morphology. The F3 concentration of 450 μg·mL-1 was more effective. The results showed that F3 fraction could be a new alternative to control bacterial spot.